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• Future adoption of low carbon fuels in
Southern California does not eliminate
high O3 concentrations

• Traditional NOX control programs to
control O3 would exacerbate race-based
exposure disparities

• Tools developed for NOx and O3 source
apportionment can be adapted to
calculate sources of exposure disparities

• The Los Angeles International Airport
(LAX) contributes to race-based NO2
exposure disparities in Southern
California
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A B S T R A C T

Environmental justice (EJ) has emerged as a critical consideration when planning new air pollution control
strategies. In this study we analyze how traditional ozone (O3) control strategies for the year 2050 will affect
exposure disparities, defined as departures from the population average exposure, for O3 and oxides of nitrogen
(NOx) in Southern California. Future air quality fields were simulated using a chemical transport model under
five emission scenarios that explore a range of traditional controls that target the largest sources of precursor
emissions using a novel O3 source apportionment technique but without considering exposure disparities. We
find that traditional O3 control strategies reduce O3 exposure disparities by <1.6 % and reduce NO2 exposure
disparities by <9 % in Southern California. For the Black and African residents living in the urban core of Los
Angeles, the relative NO2 exposure disparities increase from +23.1 % to +66.2 % and O3 exposure disparities
increase from − 3.3 % to +0.1 % due to NOx emissions reductions mainly in outlying regions and the NOx-rich
environment in the urban core. Additional analysis shows that complete elimination of NOx emissions from Los
Angeles International Airport (LAX) would reduce the NO2 exposure disparities by up to 50 %, but there is
currently no practical method to achieve this goal. The results of the current study highlight the challenge of
simultaneously attaining O3 standards and reducing exposure disparities for O3 and NO2 in cities with NOx-rich
urban cores. Reducing emissions by region may be a solution to this challenge.
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1. Introduction

Despite decades of control efforts, ambient air pollution persists as
one of the greatest environmental threats to global human health,
causing an estimated 4.2 million premature deaths in 2019 alone (World
Health Organization, 2022). In the United States, concentrations of
criteria air pollutants have declined significantly over the past five de-
cades, bringing most of the U.S. territories into compliance with Na-
tional Ambient Air Quality Standards (NAAQS). Despite this progress,
residual air pollution problems exist, and they do not affect all U.S.
residents equally, especially for ground-level ozone (O3) (Collins et al.,
2022; Miranda et al., 2011; Pope et al., 2016). In 2023, the national
average of Fourth Daily Max 8-hour O3 was 69 ppb among 484 national
sites, with a maximum value of 107 ppb, and with 189 sites exceeding
the 70-ppb NAAQS (U.S. EPA, 2024a). The spatial pattern of air pollu-
tion combined with historical housing practices and present-day socio-
economic factors results in higher air pollution exposures in minority
communities, causing environmental disparities including higher health
risks (Anderson et al., 2018; Bluhm et al., 2022; Cushing et al., 2015;
Lane et al., 2022; Liu et al., 2021; Miranda et al., 2011; Morello-Frosch
et al., 2002; Tessum et al., 2021).
Many studies have emphasized that environmental justice (EJ) must

be considered when new air quality control strategies are designed
(Anderson et al., 2018; Boyce and Pastor, 2013; Gallagher and Hollo-
way, 2022; Mitchell et al., 2015; Morelli et al., 2019; Picciano et al.,
2023; Wang et al., 2023a). This is especially important for California, as
a state with the second highest racial diversity index in the U.S. (U.S.
Census Bureau, 2021). EJ has been defined by the United States Envi-
ronmental Protection Agency (US EPA) as the fair treatment and
meaningful engagement of all people, regardless of income, race, color,
national origin, tribal affiliation, or disability, during the process of
agency decision-making and any federal activities that could impact
human health and the environment (U.S. EPA, 2024b). When EJ is
properly incorporated into environmental regulations, people will be
fully protected from disproportionate and adverse human health and
environment risks and hazards, and have equitable access to a healthy,
sustainable, and resilient environment.
Previous studies have focused on EJ analysis of particulate matter

(PM), O3, and nitrogen dioxide (NO2), but most of these studies focus on
past years (Bravo et al., 2016; Colmer et al., 2020; Kheirbek et al., 2013;
Li et al., 2022a; Mitchell and Dorling, 2003). A few studies look at the
future EJ, but only for PM (Li et al., 2022b; Luo et al., 2022; Picciano
et al., 2023). Meanwhile, many studies have analyzed the impact of
certain emission sources and locations on EJ (Do et al., 2021; Goodkind
et al., 2019; Houston et al., 2004; Li et al., 2022b; Nguyen and Marshall,
2018; Shah et al., 2020; Thind et al., 2019), but these studies generally
didn't use source apportionment methods to identify sources of O3
exposure disparities. Wang et al. (2022) used a source-receptor matrix in

their model to estimate the optimized emission sectors for reduction to
minimize the PM2.5 exposure disparities, but their model was not able to
predict O3 (Tessum et al., 2017). More studies are needed to explore
future O3 exposure disparities and disparity reduction strategies.
California is transitioning to low carbon fuels in direct response to

climate change, but these measures will also influence concentrations of
traditional air pollutants such as O3. The regulations and bills designed
to reduce greenhouse gas (GHG) emissions 80 % below 1990 levels by
the year 2050 (California Air Resources Board, 2006) will also reduce
concentrations of NO+NO2 (=NOx), which is a precursor to O3 forma-
tion. O3 chemistry is complex and nonlinear, meaning that NOx re-
ductions in urban cores can lead to higher O3 concentrations (Wu et al.,
2024, 2022; Zapata et al., 2018a; Zhao et al., 2024). However, previous
studies have shown that the majority of VOC emissions in Southern
California that contribute to O3 formation are biogenic emissions
(Pfannerstill et al., 2024; Wu et al., 2024; Zhao et al., 2024), which
makes it difficult to control O3 by reducing VOC emissions. To avoid the
increased O3 due to NOx reductions, a deep cut in NOx emissions would
be necessary, i.e. >40 % as suggested by Wu et al. (2024). Supplemental
controls were designed to offset this unintended increase in O3 con-
centrations for the year 2050 (Zhao et al., 2024) but the EJ aspects of
these strategies need further study.
Here we analyze the environmental disparities related to O3 and NO2

exposures for the year 2050 after the adoption of low carbon energy and
supplemental measures (Li et al., 2022b; Zapata et al., 2018a) that were
previously established in Zhao et al. (2024) to achieve compliance with
the O3 NAAQS in the South Coast Air Basin (SoCAB). We also analyze the
environmental disparities for historical periods between 2000 and 2019
for comparison. We use a 3-D chemical transport model (CTM) to
simulate the air quality for the past two decades and future scenarios
with reduced GHG emissions (Li et al., 2022b; Zapata et al., 2018a). An
O3 source apportionment technique is applied to help design supple-
mental O3 control strategies that can achieve compliance with the O3
NAAQS in the future. Exposure disparities under each future scenario
are analyzed for race/ethnicity groups defined by the American Com-
munity Survey (ACS). The issues that cause residual exposure disparities
are discussed and future strategies to reach exposure equity for all race/
ethnicity groups are explored.

2. Methods

2.1. Air quality simulations

2.1.1. Model description
Air quality fields were simulated using the University of California

Davis/California Institute of Technology (UCD/CIT) air quality model.
The UCD/CIT model is a research CTM model that has robust model
performance statistics (Hu et al., 2015; Venecek et al., 2019, 2018b;

Fig. 1. Selected 32 weeks during the 10-year period. Each black bar indicates a selected week.
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Ying et al., 2008; Yu et al., 2019; Zhao et al., 2022). In the current study,
the UCD/CIT model was configured with a flexible O3 source appor-
tionment technique that enables O3 tagging for NOx and VOC sources
(Zhao et al., 2022). The source tagging technique can quantify the
contributions of emissions from different geographical regions to con-
centrations in other geographical regions (Ying and Kleeman, 2006) or
emissions from different source sectors to the concentrations at receptor
locations (Cohan and Napelenok, 2011; Ying et al., 2004). In this study,
we only analyzed the contributions of emissions from different source
sectors. The SAPRC11 chemical mechanism (Carter and Heo, 2013) was
used to describe the gas-phase chemical reactions in the UCD/CIT
model. Previous studies show that SAPRC11 has superior performance
when predicting O3 in California compared to SAPRC16 (Venecek et al.,
2018a), which is very similar to the most recent SAPRC22 mechanism.
The SAPRC11 chemical mechanism was configured two ways, one way
enabling O3 apportionment from NOx sources (NOx SA) and the second
way enabling O3 apportionment from VOC sources (VOC SA). NOx SA
tags the nitrogen atom in NOx and NOx reaction products, including
NO3, N2O5, HNO3, HNO4, PAN, etc. VOC SA tags the odd oxygen in all
VOC species. Both methods tag the species involved in the primary
photolytic cycle, including O3P, O1D, and O3.

2.1.2. Simulation domain and periods
Air quality was simulated for two domains that covered the state of

California with a resolution of 24 km, and Southern California with a
resolution of 4 km (Fig. S1). This study focuses on the 4-km Southern
California domain. Simulations were conducted over three 10-year pe-
riods. The first two periods from 2000 to 2009 and 2010 to 2019
establish a historical context for air pollution exposure in California. The
future 32-week period spans from 2046 to 2055 to analyze upcoming air
quality issues and to develop effective control strategies. The sample
subset of 32 weeks (Fig. 1) was randomly selected from 2046 to 2055 to
properly represent inter-annual variability associated with the El Nino
Southern Oscillation (ENSO) cycle, which is the dominant mode of inter-
annual climate variability that affects regional climate and air quality in
California (Lin et al., 2015; Xu et al., 2017; Zhang et al., 2012). Eight
weeks were selected in each of the four seasons to ensure representative
coverage throughout the year, with each week having extra four days for
spin-up time (total of 11 days simulated for each week). This sampling
approach characterizes both the long-term average and the variability
(Table S1) in pollutant concentrations, yielding standard deviations
(std_devs) of BAU and GHGAi concentrations under RCP8.5 that are
comparable with the std_devs of concentrations predicted for the years
2010–2019. The approach balances accuracy with computational effi-
ciency that avoids simulating every day in the 10-year window. The
uncertainty associated with this 32-week sampling approach is dis-
cussed in the following section.

2.1.3. Meteorological fields
Meteorology inputs for the CTM were generated by the Weather

Research and Forecasting (WRFv3.4) model. The periods 2000–2009
and 2010–2019 used initial/boundary conditions from NCEP North
American Regional Reanalysis (NARR) (National Centers for Environ-
mental Prediction et al., 2005). The future 32-week period used initial/
boundary conditions from the Community Earth System Model (CESM)
(Research Data Archive et al., 2011) under the representative concen-
tration pathway (RCP) 8.5, an upper-bound high GHG-emissions sce-
nario, and the intermediate RCP4.5 scenario described by the
Intergovernmental Panel on Climate Change (IPCC). The RCP8.5 was
chosen as the focus of this study to analyze worst-case climate scenario
for the feasibility of O3 control strategies. A recent study has shown that
RCP8.5 is the best match to the midcentury under current policies
(Schwalm et al., 2020). The RCP4.5 sensitivity study was used in com-
bination with two California emissions scenarios to analyze the impacts
of alternative climate scenarios on EJ. Four-dimensional data assimila-
tion (FDDA) was used in 2000–2009, and 2010–2019 periods, but not in

the future 32-week period. The FDDA used the NCAR ADP observation
database (National Centers for Environmental Prediction et al., 2004a,
2004b, 1980a, 1980b) with the global CFSR model data (Saha et al.,
2014, 2010) quality control checked as background.

2.1.4. Emissions
Five future emission scenarios for criteria pollutants in the state of

California were simulated in this study (see Table 1). Emissions in each
scenario were grouped into nine source sectors: “tire and break wear”,
“on road vehicles”, “off-road equipment and rail”, “marine vessels and
aircraft”, “residential and commercial buildings”, “electricity genera-
tion”, “fuel supply”, “industrial and agricultural”, and “biogenic emis-
sions”. Two emission scenarios, “business-as-usual” (BAU) scenario and
“greenhouse gas reduction” (GHGAi) scenario were previously con-
structed using the energy-economic optimization model, CA-TIMES,
combined with the California Regional Multisector Air Quality Emis-
sions (CA-REMARQUE_v1.0) model (Li et al., 2022; Zapata et al.,
2018b). In the BAU scenario, GHG emissions are reduced to 1990 levels.
In the GHGAi scenario, GHG emissions are reduced 80 % below 1990
levels in the most economical manner possible in order to achieve Cal-
ifornia's climate goal (California Air Resources Board, 2006). Each GHG
emissions scenario was translated to a criteria pollutant emissions sce-
nario using CA-REMARQUE. Three additional criteria pollutant control
scenarios were constructed based on the GHGAi scenario in order to
reduce O3 concentrations in SoCAB in the year 2050 to comply with the
O3 NAAQS (Zhao et al., 2024). The three GHGAi control scenarios
reduced the emissions cumulatively, with GHGAi_ControlStepI being
least stringent and GHGAi_ControlStepIII being most stringent.
GHGAi_ControlStepI reduced 100 % of all pollutant emissions from “off-
road equipment & rail” by assuming adoption of clean energy that has
zero emissions, and 80 % NOx emissions from “marine vessels” in
compliance with the International Convention for the Prevention of
Pollution from Ships (MARPOL) Annex VI Tier III standard. In addition
to the emission reductions in GHGAi_ControlStepI, GHGAi_ControlStepII
further reduced 50 % of the NOx emissions from “industry and agri-
culture” through the adoption of low-NOx engines. GHGAi_Control-
StepIII used more clean energy and applied more aggressive controls
than the previous two control measures, with 100 % of all pollutant
emissions eliminated from “off-road equipment& rail”, 90 % of the NOx
emissions eliminated from “marine vessels”, and 100 % of the NOx
emissions eliminated from “industry and agriculture”. All five future
emission scenarios were analyzed under meteorology from the RCP8.5

Table 1
Regulatory compliance future emission scenario description.

Scenario Description

BAU

A “business-as-usual” case where greenhouse gas emissions
in 2020 are reduced below 1990 levels but no more
constraints beyond 2020 under current California's
regulations

GHGAi

A climate-friendly greenhouse gas reduction case that
achieved California's climate goal of 80 % reduction of GHG
emissions relative to 1990 levels by the year 2050 with
adoption of advanced technologies and renewable energies

GHGAi_ControlStepI

An emission reduction scenario based on GHGAi scenario
that reduced 100% of all pollutant emissions from “off-road
equipment & rail” and 80 % NOx emissions from “marine
vessels”

GHGAi_ControlStepII

An emission reduction scenario based on GHGAi scenario
that reduced 100% of all pollutant emissions from “off-road
equipment & rail”, 80 % NOx emissions from “marine
vessels”, and 50 % NOx emissions from “industry and
agriculture”

GHGAi_ControlStepIII

An aggressive emission reduction scenario based on GHGAi
scenario that reduced 100 % of all pollutant emissions from
“off-road equipment & rail”, 90 % NOx emissions from
“marine vessels”, and 100 % NOx emissions from “industry
and agriculture”
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scenario, while the BAU and GHGAi emission scenarios were addition-
ally analyzed under the RCP4.5 climate scenario as a sensitivity study.
Hereafter, all mention of “BAU” and “GHGAi” refers to the BAU and
GHGAi scenarios coupled with RCP8.5 unless otherwise noted. Figs. S2
and S3 show the annual average NOx and NMVOC emissions (tons per
day) in GHGAi and the reductions in different Control Steps compared to
GHGAi. Table S2 shows the population weighted annual total emissions
(tons per year) in LA and SD under GHGAi and the percentage of change
in different Control Steps compared to GHGAi. Anthropogenic emissions
during the 2000–2009 and 2010–2019 historical periods were generated
using the Sparse Matrix Operator Kernel Emissions (SMOKEv3.7)
modeling system with the California Air Resource Board (CARB) emis-
sion inventories. Biogenic emissions for the three 10-year periods were
generated using the Model of Emissions of Gases and Aerosols from
Nature (MEGANv2.1) based on daily meteorological inputs from WRF.

2.1.5. Initial and boundary conditions
Predictions from the Model for Ozone and Related chemical Tracers

(MOZART) for 2000–2015 and the Community Atmosphere Model with
Chemistry (CAM-chem) for 2016–2019 were used as the initial and
boundary conditions for air quality simulations from 2000 to 2019. For
the year 2050, we assumed that the initial and boundary conditions
would be similar to current conditions adjusted for seasonality. There-
fore, initial and boundary conditions for 2046–2055 used MOZART
predictions for the same day of the year in the range 2000–2009.

2.2. Environmental disparity

Race and ethnicity information was obtained from the American
Community Survey (ACS) 2012–2016 dataset (U.S. Census Bureau,
2020) that includes Black and African Americans (Black), Hispanic or
Latino (Hispanic), Asian, and non-Hispanic or non-Latino White (White)
people at the census tract level. Fig. S4 shows the two geographic re-
gions in Southern California used in this calculation: Los Angeles (LA)
and San Diego (SD). The population data by race/ethnicity group in the
LA and SD regions is shown in Table S3. Estimates of changing future
demographics are highly uncertain, and so present-day population de-
mographics are used for all calculations.
Environmental disparity was calculated using population weighted

average concentrations for 4KM results for two air pollutants: maximum
daily 8-h average (MD8H) O3 and 24 h-averaged (24 h-avg) NO2. The
population weighted average is a good proxy for the exposure for a
whole race/ethnicity group and enables racial equity comparison
(Gallagher and Holloway, 2022; Lane et al., 2022; Li et al., 2022b; Liu
et al., 2021; Picciano et al., 2023; Tessum et al., 2021; Wang et al.,
2023b). This approach does not consider the total numbers of exposed
people in each race/ethnicity group since each race/ethnicity group
should be treated fairly, regardless of size. Both pollutants were aver-
aged across 2000–2009 (2000–2009_avg), 2010–2019
(2010–2019_avg), and future 32 weeks under different emission sce-
narios. Average pollutant exposures for each race/ethnicity group were
calculated using the equation:

Ck
pop− wgted =

∑(imax,jmax)
(i,j)=(1,1) Ci,jPk

i,j
∑(imax,jmax)

(i,j)=(1,1) Pk
i,j

where: Ck
pop− wgted is the population weighted concentration for race k. Ci,j

is the average pollutant concentration at grid location (i, j). Pk
i,j is the

population data at grid location (i, j) for race k. (imax, jmax) is the
maximum value for grid location (i, j). Based on historical simulations
conducted for the 10-year window between 2010 and 2019, the uncer-
tainty (Table S4) in predicted population-weighted concentrations of O3
and NO2 associated with the 32-week simulation strategy in Los Angeles
would be ±1.8 ppb and ± 0.71 ppb, respectively. As discussed below,
the actual uncertainty in the disparity calculations is even smaller than

this value.
Once population-weighted concentrations were tabulated, the rela-

tive environmental disparity for each race/ethnicity group was then
calculated as:

RDk =
Ck

pop− wgted − CAll
pop− wgted

CAll
pop− wgted

×100%

where: RDk is the relative disparity for race k. Ck
pop− wgted is the population

weighted concentration for race k. CAll
pop− wgted is the population weighted

concentration for all race/ethnicity groups combined. The uncertainty
introduced by the 32-week simulation strategy in Los Angeles is minor
because all race/ethnicity groups are affected approximately equally by
the meteorological variability that affects total population exposures.
The maximum exposure disparities associated with the 32-week simu-
lation approach for O3 and NO2 are estimated to have an uncertainty of
0.11 ppb and 0.12 ppb, respectively, based on historical simulations
between 2010 and 2019 over Los Angeles.

2.3. Threshold for healthy air

In addition to the environmental disparities, we also analyzed the
percentage of people living in each study area that experienced un-
healthy O3 or NO2 concentrations. The O3 health threshold was set to 35
ppb based on a statistical analysis for respiratory mortality (P = 0.002)
and circulatory mortality (P = 0.07) (Turner et al., 2016). The NO2
health threshold was set to 4.6 ppb as suggested by the latest World
Health Organization (WHO) global air quality guidelines (AQG) (World
Health Organization, 2021). The AQG level is the long-term concen-
tration of the pollutant that will generate minimal relevant health
outcome. The WHO determined the lowest level of exposure based on
the 5th percentile of the exposure distribution from previous studies.
The average of the five lowest 5th percentile levels were used as the NO2
AQG level (8.8 μg/m3 = 4.6 ppb for NO2 at 1 atm and 273.15 K).
The percentage of people experiencing unhealthy air quality was

calculated as the number of people exposed to O3 or NO2 concentrations
above the healthy limit divided by the total number of people in the
study region.

2.4. Additional experiments to reduce disparity

Residual O3 and NO2 exposure disparities under the three
GHGAi+control scenarios were further explored using “brute force”
reductions targeted at dominant sources upwind of the affected pop-
ulations. During this process, the feasibility of the “brute force” re-
ductions is not discussed, as the main purpose is to verify the
effectiveness of the O3 source apportionment tool for disparity
reduction.

Table 2
Model performance statistics of MD8H O3 at selected EPA sites for 2000–2009
and 2010–2019 periods.

2000–2009 2010–2019

NMB NME r NMB NME r

060371103
Los Angeles 5.12 % 25.76 % 0.778 7.58 % 24.44 % 0.650

060658001
Riverside

− 1.76 % 19.95 % 0.809 − 0.11 % 20.28 % 0.688

060372005
Pasadena

3.29 % 23.89 % 0.786 8.18 % 20.88 % 0.667

060714003
Redlands

2.43 % 19.53 % 0.829 − 1.33 % 17.95 % 0.756
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3. Results and discussion

3.1. Model performance for 2000–2009 and 2010–2019 periods

The performance of the WRF model for temperature, wind, and
relative humidity (Table S5) is consistent with a previous long-term air
pollution modeling study in California (Hu et al., 2014). Mean fractional
bias (MFB) of temperature and wind are generally within ±0.15. root
mean square errors (RMSE) of temperature are generally lower than
4 ◦C, and RMSE of wind are generally lower than 2 m/s. Table 2 sum-
marizes the CTM performance statistics for MD8H O3 predictions at four
selected urban EPA monitoring sites in Fig. S1 with continuous data for
2000–2009 and 2010–2019 periods. Figs. S5 and S6 show the time series
of simulated and observed MD8H O3 at these monitoring sites for
2000–2009 and 2010–2019 periods. Recommended benchmarks for air
quality model performance statistics of MD8H O3 were taken from
Emery et al. (2017). The performance statistics “goals” are Normalized
Mean Bias (NMB) < ±5 %, Normalized Mean Error (NME) < 15 %, and
Correlation Coefficient (r) > 0.75, which should be viewed as the best a
CTM can be expected to achieve. The performance statistics “criteria”

are NMB < ±15 %, NME < 25 %, r > 0.50, which should be viewed as
the skill that most CTMs routinely achieve. The formulas of these per-
formance statistics are provided in Table S4. Of the 24 performance
statistics, 10 meet the most stringent “goals” and 13 meet the “criteria”.
The only performance statistic that slightly exceeds the criteria is the
NME value at Los Angeles during the 2000–2009 period. Sharp spatial
gradients around the Los Angeles monitoring site associated with fresh
NOx emissions may not be fully resolved with the 4 km grid resolution
used in the current study. The performance statistics for 2010–2019 are
slightly degraded compared to the statistics for 2000–2009, possibly
because the lower O3 concentrations in 2010–2019 could cause larger
percentage error even if the value of absolute error didn't change. Note
that O3 concentrations are overestimated in 2013 at Los Angeles and
Pasadena due to a wildfire event near the two sites. The model calcu-
lations might not accurately represent the details of the wildfire plume
dynamics or the microscale meteorology during this isolated event,
resulting in an overestimation of O3 concentrations. However, future
simulations will not include random and unpredictable wildfire events
and so this issue will not influence calculated exposure disparities.
Overall, the performance statistics indicate that simulated O3

Fig. 2. MD8H O3 concentrations averaged across 2000–2009, 2010–2019, and the future 32-week simulation period under RCP8.5. Bold line indicates border of the
SoCAB. (All concentrations in units of ppb).
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concentrations over the historical time period 2000–2019 are accurate,
increasing confidence in the future predictions.
NO2 predictions are in good agreement with observations for the

time period 2000–2009 (Fig. S7) and 2010–2019 (Fig. S8) with both
average values and seasonal trends captured. VOC predictions and
measurements for formaldehyde, isoprene, benzene, and toluene in Los
Angeles for 2000–2019 (Figs. S9 and S10) also have similar average
values and seasonal trends, but VOC measurements have greater vari-
ability about the averaged concentrations than model predictions, sug-
gesting that VOC emissions inventories do not fully capture the short-
term variability of sources. This issue will not affect calculated expo-
sure disparity for NO2 and O3. Further details of the VOC comparison are
discussed in SI.

3.2. Averaged air quality exposure

Figs. 2 and 3 show the MD8H O3 and 24 h-avg NO2 concentrations in
Southern California averaged across 2000–2009, 2010–2019, and the
32-week simulation period in 2046–2054 under different future RCP8.5
GHG emission scenarios. MD8H O3 concentrations significantly increase

in the BAU scenario compared to 2000–2009_avg and 2010–2019_avg,
while 24 h-avg NO2 concentrations significantly decrease. For the five
future scenarios, both MD8H O3 and 24 h-avg NO2 concentrations are
significantly reduced in the three increasingly stringent control strate-
gies. The three GHGAi control steps reduced MD8H O3 concentrations
by as much as 8.6 ppb to 12.6 ppb and 24 h-avg NO2 concentrations by
as much as 13.94 ppb to 35.54 ppb compared to the GHGAi scenario
(Figs. S11 and S12). Table S6 shows the population weighted O3 con-
centration decreases by 9–15 % in LA and 12–15 % in SD under the
GHGAi scenario. The population weighted NO2 decreases by >50 % in
both LA and SD regions in three supplemental GHGAi control steps.
Averaged MD8H O3 concentrations mainly peak in the north and east
portions of SoCAB outside the urban core (Fig. 2). NO2 concentrations
are elevated across the central SoCAB region compared to the outlying
regions in 2000–2009 and 2010–2019, but concentrations decrease for
future scenarios, with urban hotspots remaining at the port of Long
Beach, port of Los Angeles, and Los Angeles International Airport (LAX)
(Fig. 3).
Fig. 4 shows the hour 13 Pacific Time HCHO / NO2 ratio (FNR),

corresponding to the typical peak in O3 concentrations, averaged over

Fig. 3. 24hr-avg NO2 concentrations averaged across 2000–2009, 2010–2019, and the future 32-week simulation period under RCP8.5. Bold line indicates border of
the SoCAB. (All concentrations in units of ppb).
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2000–2009, 2010–2019, and the future 32-week simulation periods
under a range of RCP8.5 emissions scenarios. The hour 13 FNR value
was also used to determine the transition between NOx-limited and
VOC-limited chemical regimes in California (Wu et al., 2022). A tran-
sition value of 4.6 has been subtracted from the FNR values and the color
key has been adjusted so that VOC-limited regions are blue, NOx-limited
regions are red, and regions in the transition zone between NOx-limited
and VOC-limited chemistry are white. Both 2000–2009_avg and
2010–2019_avg are VOC-limited across the entire SoCAB. NOx-limited
regions start to appear outside the major urban area in the future
emissions scenarios as NOx emissions are reduced. The VOC-limited
regions in the future scenarios shrink significantly as increasingly

stringent emissions controls are applied, but the region between
downtown LA and the Port of LA remains VOC-limited under all future
emission scenarios.
Fig. S13 shows the population weighted MD8H O3, 24 h-avg NO2

concentrations, and the hour 13 FNR values in LA and SD. Population
weighted MD8H O3 in LA and SD increases 7–11 ppb (~16–27 %) in
RCP8.5 BAU and RCP8.5 GHGAi scenarios compared to the
2000–2009_avg and 2010–2019_avg period. MD8H O3 is reduced by <8
ppb (~15 %) compared to the GHGAi concentrations in the three future
supplemental control scenarios under RCP8.5. The population weighted
24 h-avg NO2 concentrations in LA are reduced from 29.1 ppb in
2000–2009_avg to 10.2 ppb under RCP8.5 BAU, and then to 1.93 ppb

Fig. 4. Formaldehyde to NO2 (FNR) ratio at hour 13 averaged across 2000–2009, 2010–2019, and the future 32-week simulation period under RCP8.5. Transition
value of 4.6 is subtracted from all values. Blue indicates VOC-limited, red indicates NOx-limited.
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under the GHGAi_ControlStepIII scenario. The population weighted 24
h-avg NO2 concentrations in SD are reduced from 16.6 ppb in
2000–2009_avg to 5.0 ppb under RCP8.5 BAU, and then to 1.6 ppb
under the GHGAi_ControlStepIII scenario. The population weighted FNR
values increase, and the chemical regimes become less VOC-limited as
the emissions are reduced. However, using a transition FNR of 4.6, the
average resident in the LA and SD regions still lives in the VOC-limited
chemical regime under all scenarios analyzed in the current study.
Since O3 concentrations may also be affected by different climate

conditions, we compare the MD8H O3 changes associated with meteo-
rological conditions under constant emissions to MD8H O3 changes
associated with changing emissions under constant meteorological
conditions (Fig. 5). Under the same emission condition, changing from
RCP8.5 to RCP4.5 results in MD8H O3 changes from − 2.2 ppb to +2.1
ppb (Fig. 5a and b). Under the samemeteorological conditions, changing
from BAU to GHGAi emissions results in MD8H O3 changes from − 3.9
ppb to+2.9 ppb (Fig. 5c and b). Thus, emission changes have an equal or
greater impact on ozone concentrations than meteorological changes in
Southern California. These results are in agreement with the findings
from previous studies that also showed that changes in anthropogenic
emissions have greater effect on ozone than climate change (Moghani
and Archer, 2020; Steiner et al., 2006; Stowell et al., 2017; Tagaris et al.,
2007; Wu et al., 2008).
The relative importance of emissions vs. meteorology depends on the

analysis time period, since emissions are in continual decline over time
whereas climate change strengthens over time. The current study fo-
cuses on the mid-century time period when meteorological conditions
under different climate scenarios are still somewhat similar to each
other. In our simulations, the 32-week average temperatures increase by
0.5–1.1 ◦C across California from RCP4.5 to RCP8.5. It has been reported
that the projected global mean surface air temperature for the mid-21st
century would only increase by 1.0–2.0 ◦C in average from RCP2.6 to
RCP8.5 (IPCC, 2013), which is consistent with our simulations. There-
fore, we would expect small perturbations in O3 concentrations within
such small temperature variations in the near future. Meanwhile,

predicted reductions in anthropogenic emissions are big enough to
surpass the effects of climate change. A similar analysis conducted in the
year 2100 would likely show that meteorological conditions under
diverging climate pathways will more significantly influence O3 con-
centrations, but this analysis is beyond the scope of the current study.

3.3. Environmental disparities

Tables S7 and S8 tabulate the calculated population weighted O3 and
NO2 concentrations and their std_devs for difference race/ethnicity
groups under different scenarios. The BAU_avg indicates the average of
BAU scenarios under RCP8.5 and RCP4.5, and the GHGAi_avg indicates
the average of GHGAi scenarios under RCP8.5 and RCP4.5. The std_devs
of future scenarios are comparable to the std_devs of 2000–2009_avg and
2010–2019_avg, with std_devs decreasing with increasingly strict
emissions controls. Figs. 6a and 7a show the relative exposure disparity
of MD8H O3 (left) and the percentage of population that is exposed to
healthy/unhealthy levels of O3 concentrations (right) in the LA and SD
regions averaged for different scenarios. Positive disparity values indi-
cate that the race/ethnicity group is exposed to O3 concentrations above
the population average, while negative disparity values indicate that the
group is exposed to O3 concentrations below the population average.
Fig. 6a shows that Hispanic or Latino residents in Los Angeles are
exposed to above-average O3 concentrations under all scenarios except
2000–2009_avg (− 0.2 %), with exposure disparities ranging from 0.5 %
in 2010–2019_avg to 2.0 % under the GHGAi_ControlStepIII. Black and
African American residents experience the lowest O3 concentrations in
2000–2009_avg, 2010–2019_avg, and the BAU_avg scenario, with ex-
posures of 5.1 %, 3.8 %, and 3.4 % below the average, respectively.
However, the absolute O3 exposure disparity for Black residents de-
creases under the control scenarios, falling to 2.2 % below the average
under GHGAi_avg and to 0.1 % above the average under GHGAi_Con-
trolStepIII. Asian residents in Los Angeles consistently have absolute O3
exposure disparities within 1 % of the population average across all
scenarios. White residents are exposed to higher-than-average O3

Fig. 5. Impacts of meteorological and emissions changes on 32-week averaged MD8H O3 under RCP4.5 and RCP8.5 with BAU and GHGAi emission scenarios.
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concentrations in 2000–2009_avg and 2010–2019_avg scenarios, with
disparities of 1.7 % and 0.3 %, respectively. However, White residents
are exposed to lower-than-average O3 concentrations under all future
scenarios, with a maximum disparity of − 2.5 % under the strictest
emissions controls. In 2000–2009_avg, 21.6 % of Black residents in LA
are exposed to MD8H O3 below 35 ppb, while the ratios for other race/
ethnicity groups are approximately 10 %. In 2010–2019_avg, 6.4 % of
White residents in LA live in areas with MD8H O3 below 35 ppb, while
the ratios for other race/ethnicity groups are approximately 2 %. Under
all future scenarios, <5 % of residents in LA from each race/ethnicity
group are exposed to MD8H O3 below 35 ppb.
O3 exposure disparities are generally smaller in SD compared to LA

(Fig. 7a vs. Fig. 6a). Black residents in San Diego are exposed to below-
average O3 concentrations in 2000–2009_avg, but above-average O3
concentrations in other scenarios. The Black residents always experience
the highest absolute exposure disparities under all scenarios, from 0.5 %
to 2.1 %. Hispanic residents are always exposed to above-average O3
concentrations. Hispanic residents have the highest O3 exposure in
2000–2009, but second highest O3 exposure with disparities ranging
from 0.6 % to 1.0 % in other scenarios. Asian residents are exposed to
below-average O3 concentrations in 2000–2009_avg and
2010–2019_avg, but above-average O3 concentrations in all future sce-
narios. Asian residents have the same exposure disparity as Black resi-
dents in 2000–2009_avg (− 1.1 %), but very little O3 exposure disparity
in other scenarios. White residents are exposed to slightly above-average
O3 concentrations in 2000–2009_avg with disparity of 0.1 %, but below-
average O3 concentrations in other scenarios with disparities ranging
from − 0.6 % to − 0.9 % as emissions are reduced under different

scenarios. None of the residents of different race/ethnicity groups in SD
are exposed to MD8H O3 below 35 ppb in 2000–2009_avg,
2010–2019_avg, BAU_avg or GHGAi_avg. Under the three GHGAi con-
trol scenarios, the percentage of residents exposed to low O3 concen-
trations increase from <1 % to 7 %.
Figs. 6b and 7b show the 24 h-avg NO2 exposure disparity (left) and

the percentage of population that is exposed to healthy/unhealthy levels
of NO2 concentrations (right) in the LA and SD regions averaged for
different scenarios. In both LA and SD regions, Black and Hispanic res-
idents are consistently exposed to above-average NO2 concentrations,
while White residents are consistently exposed to below-average NO2
concentrations. Asian residents are exposed to above-average NO2
concentrations in 2000–2009_avg and 2010–2019_avg, and below-
average NO2 concentrations in the future GHGAi control scenarios in
both LA and SD. For BAU_avg and GHGAi_avg scenarios, the 24 h-avg
NO2 concentrations for Asian residents are slightly below the average in
LA but slightly above the average in SD.
In the LA region, the relative exposure disparities for Black residents

increase significantly as the future control strategies to achieve regula-
tory compliance reduce emissions from off-road sources in outlying
areas. The traditional approach that targets the precursors contributing
to the highest regional O3 concentrations are not optimal for reducing
exposure disparities. The traditional control measures reduce NO2
concentrations more slowly for Black residents compared to the regional
average reduction. In both LA and SD, the percentages of Black residents
exposed to unhealthy 24 h-avg NO2 concentrations above 4.6 ppb under
all scenarios are always highest, followed by Hispanic, Asian, and then
White residents. In SD, all the residents are exposed to NO2

Fig. 6. Relative disparity of population weighted averaged MD8H O3 and 24hr-
avg NO2 exposure (left) and percentage of population exposed to healthy/un-
healthy concentration levels (right) for different race/ethnicity groups at LA.
The red error bars of the BAU_avg and GHGAi_avg indicate the disparities under
RCP8.5 and RCP4.5 scenarios.

Fig. 7. Relative disparity of population weighted averaged MD8H O3 and 24hr-
avg NO2 exposure (left) and percentage of population exposed to healthy/un-
healthy concentration levels (right) for different race/ethnicity groups at SD.
The red error bars of the BAU_avg and GHGAi_avg indicate the disparities under
RCP8.5 and RCP4.5 scenarios.
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concentrations below 4.6 ppb under the three future traditional control
scenarios, indicating that any residual NO2 exposure disparity will not
affect public health.
In both Figs. 6 and 7, the relative disparities under the RCP4.5 BAU

and RCP4.5 GHGAi scenarios are very similar to the RCP8.5 BAU and
RCP8.5 GHGAi scenarios, respectively. Using the difference between the
RCP4.5 and RCP8.5 results, the uncertainties of relative exposure dis-
parities of MD8H O3 range from 0.03 % to 0.17 % for Black, 0.05 % to
0.22 % for Hispanic, 0.07 % to 0.65 % for Asian, and 0.0003 % to 0.08 %
for White. The uncertainties of relative exposure disparities of 24 h-avg
NO2 range from 0.17 % to 0.53 % for Black, 0.08 % to 0.40 % for His-
panic, 0.21 % to 0.34 % for Asian, and 0.003 % to 0.41 % for White. All
the uncertainties of the relative disparities are <0.7 %. The fractional
error for the relative disposure disparities (length of the error bar from
the center divided by the absolute mean relative disparity) for the
highest exposed groups is <18 % for MD8H O3 and 15 % for 24 h-avg
NO2. Note that fractional errors cannot be calculated for groups with
extremely low (~0) exposure disparities.
Table 3 shows the maximum relative disparity differences between

Table 3
Maximum relative disparity differences of MD8H O3 and 24hr-avg NO2 exposure
between race/ethnicity groups that have highest and lowest exposure under
RCP8.5 and RCP4.5 with BAU and GHGAi emission scenarios.

Pollutants Emission
scenario

Max disparity
difference under
RCP8.5

Max disparity
difference under
RCP4.5

Change from
RCP8.5 to
RCP4.5

LA O3
BAU 4.8 % 4.4 % − 0.4 %
GHGAi 3.9 % 3.5 % − 0.4 %

LA NO2
BAU 40.7 % 41.6 % − 0.9 %
GHGAi 47.7 % 47.2 % 0.5 %

SD O3
BAU 1.9 % 2.4 % 0.5 %
GHGAi 2.1 % 2.5 % 0.4 %

SD NO2
BAU 16.7 % 17.7 % 1.0 %
GHGAi 12.7 % 13.5 % 0.9 %

Note: Change fromRCP8.5 toRCP4.5= MaxDifferenceRCP4.5 − MaxDifferenceRCP8.5.

Fig. 8. Population map for different race/ethnicity groups with chemical regimes indicated by FNR under the RCP8.5 GHGAi scenario (blue contour lines are the
values of FNR-4.6). Bold contour line indicates transition from NOx-limited chemistry (solid contour lines) to VOC-limited chemistry (dashed contour lines).

Y. Zhao et al. Science of the Total Environment 963 (2025) 178379 

10 



race/ethnicity groups that have highest and lowest exposure under
RCP8.5 and RCP4.5 with BAU and GHGAi emission scenarios. The
changes from RCP8.5 to RCP4.5 range from − 0.5 % to 1.0 %, which are
relatively small. Overall, the largest relative exposure disparities are not
sensitive to the choice of RCP8.5 vs. RCP4.5 climate scenarios.
Figs. 8, 9 and S14–S16 illustrate the population maps for different

race/ethnicity groups in Southern California overlaid on contour lines
for O3 formation chemical regimes under different future RCP8.5 sce-
narios. These maps show that Black residents are clustered in urban core
regions with lower FNR regions (NOx-rich), while the other race/
ethnicity groups live in outlying regions with higher FNR due to lower
NOx concentrations. These spatial patterns explain why NOx emissions
reductions have different effects on different race/ethnicity groups.
Under the RCP8.5 GHGAi scenario, all race/ethnicity groups live in a
NOx-rich atmosphere (Fig. 8). Under the RCP8.5 GHGAi_ControlStepIII
scenario, some fraction of the Hispanic, Asian, and White residents
transition to a NOx-limited chemical regime, but the Black residents

living between central LA and Long Beach remain in a NOx-rich region
(Fig. 9). Fig. S17 shows the population weighted FNR centered on 4.6 for
different race/ethnicity groups in the LA and SD regions. All race/
ethnicity groups live in VOC-limited regions on average under all control
scenarios, with the exception that Asian residents live in NOx-limited
regions on average under the RCP8.5 GHGAi_ControlStepIII scenario.
Black and African American residents always live in the most VOC-
limited regions under all control scenarios. Fig. S18 shows the relative
disparity of FNR at hour 13 in the LA and SD regions. Black and African
American residents are always exposed to below-average FNR values in
both LA and SD under all scenarios.

3.4. Disparity reduction strategies for future scenarios

In order to reduce the exposure disparities for Black residents under
future scenarios, future sources that contribute to 24 h-avg NO2 and
MD8H O3 across different race/ethnicity groups were analyzed (Figs. 10

Fig. 9. Population map for different race/ethnicity groups with chemical regimes indicated by FNR under the RCP8.5 GHGAi Control Step III scenario (blue contour
lines are the values of FNR-4.6). Bold contour line indicates transition from NOx-limited chemistry (solid contour lines) to VOC-limited chemistry (dashed con-
tour lines).
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and S19). Figs. 10a and S19a illustrate the NOx source apportionment
results of population weighted 24 h-avg NO2 and MD8H O3 for different
race/ethnicity groups in LA under the RCP8.5 GHGAi scenario. Source
contributions to MD8H O3 are similar across race/ethnicity groups
(Fig. S19), while marine vessel and aircraft contributions to 24 h-avg
NO2 are elevated for Black and African American residents in LA
(Fig. 10a). Boundary and initial conditions (BCICs) contribute more
strongly to O3 in the control scenarios in both LA and SD but background
O3 is not a dominant source of O3 exposure disparity. BCICs remain
unchanged as emissions are reduced and less background O3 reacts with
local-emitted NOx, causing BCICs to contribute more to relative and
absolute concentrations of the residual air pollution in these cleaner
scenarios. Biogenic NO emissions in the LA and SD regions are very low
relative to anthropogenic NO emissions. Biogenic sources therefore
show little to no contributions to NO2 concentrations in Figs. 10 and

S19. Biogenic VOC emissions do contribute significantly to O3 formation
in Southern California (Zhao et al., 2024).
Figs. 10b and S19b show evolving source contributions to 24 h-avg

NO2 and MD8H O3 for Black & African American residents under future
traditional emissions control scenarios. Marine vessels& aircraft remain
as significant sources of NO2 for Black and African American residents
under all control scenarios. Considering that 80–90 % of NOx emissions
from marine vessels have been reduced, the majority of the remaining
emissions are released by aircraft. As Los Angeles International Airport
(LAX) is the largest airport in the LA region, two additional disparity
reduction scenarios/sensitivity tests with brute-force method were
analyzed to explore the effects of reducing local emissions from LAX
under each traditional control step. One sensitivity test reduced LAX
emissions by 50 % (LAX50) while the second sensitivity test reduced
LAX emissions by 100 % (LAX00) under GHGAi StepI, StepII, and StepIII
(six additional sensitivity test scenarios – see Table 4). All the sensitivity
tests were performed during summer months (June, July & August),
when O3 exceedances are most common (Zhao et al., 2024). The values
discussed in the remainder of this analysis all correspond to summer
days. Figs. S20 and S21 show the relative disparities for summertime,
which have similar patterns as the 32-week average disparity plots. Such
similarity also exists for the winter months (December, January &
February) (not shown). Therefore, we should expect similar effects of
reducing LAX emissions on the relative disparities for summer months to
the 32-week average.
Figs. 11, 12, S20 and S21 show the relative disparities for population

weighted summertime MD8H O3 and 24 h-avg NO2 (left), and percent-
age of population exposed to healthy/unhealthy concentration levels
(right) under the six LAX test scenarios alongside the original control
scenarios. Changes to MD8H O3 exposure disparities for Black and Af-
rican American residents induced by the additional NOx controls at LAX
are minor. However, the relative NO2 exposure disparities for Black and
African American residents in LA are reduced significantly as NOx at
LAX is controlled. Reducing LAX emissions by 50 % reduces the NO2
exposure disparity for Black and African American residents from 53.1
% to 40.9 % for Control Step I, from 59.3 % to 45.8 % for Control Step II,

Fig. 10. Population weighted concentrations (PWC) of summertime NO2 from NOx source apportionment in LA for (a) different race/ethnicity groups under RCP8.5
GHGAi and (b) Black & African Americans under different RCP8.5 scenarios (unit: ppb). BCIC refers to boundary and initial conditions.

Table 4
Additional future emission scenarios for exposure disparity reduction.

Scenario Description

GHGAi_ControlStepI_LAX50
An emission reduction scenario based on
GHGAi_ControlStepI scenario that further reduced
50 % NOx emissions from LAX airport

GHGAi_ControlStepII_LAX50
An emission reduction scenario based on
GHGAi_ControlStepII scenario that further reduced
50 % NOx emissions from LAX airport

GHGAi_ControlStepIII_LAX50
An emission reduction scenario based on
GHGAi_ControlStepIII scenario that further reduced
50 % NOx emissions from LAX airport

GHGAi_ControlStepI_LAX00
An aggressive emission reduction scenario based on
GHGAi_ControlStepI scenario that further reduced
100 % NOx emissions from LAX airport

GHGAi_ControlStepII_LAX00
An aggressive emission reduction scenario based on
GHGAi_ControlStepII scenario that further reduced
100 % NOx emissions from LAX airport

GHGAi_ControlStepIII_LAX00
An aggressive emission reduction scenario based on
GHGAi_ControlStepIII scenario that further reduced
100 % NOx emissions from LAX airport
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and from 71.3 % to 55.3 % for Control Step III. The total removal of LAX
emissions reduces the NO2 exposure disparity for Black and African
American residents from 53.1 % to 23.9 % for Control Step I, 59.3 % to
26.8 % for Control Step II, and 71.3 % to 29.6 % for Control Step III. The
percentage of Black and African American residents who are exposed to
unhealthy 24 h-avg NO2 concentrations (≥4.6 ppb) decreases signifi-
cantly, from >22 % under original control scenarios to <10 % after LAX
emissions scenarios are eliminated. Reductions in LAX emissions have
minor effect on the NO2 exposure disparities for other race/ethnicity
groups since they are not concentrated in regions immediately down-
wind of the airport.
It should be noted that all the sensitivity tests for LAX emissions are

unrealistic based on current technology. Elimination of NOx emissions
from jet aircraft would require new control technology that does not yet
exist. The main purpose of the sensitivity analysis conducted here is to
verify the source tagging results that identify LAX emissions as a major
source of NOx exposure for downwind residents.

4. Conclusion

This study has focused on the future EJ analysis of O3 and NO2
exposure disparities under different emissions reduction scenarios.

Previous studies show that biogenic VOC emissions would prevent
attainment of O3 standards in Southern California, making NOx control
the only viable long-term strategy. While controlling NOx emissions,
policy makers should keep in mind that small reductions in NOx emis-
sions may cause increases in O3 concentrations, and only a deep cut in
NOx emissions can avoid such disbenefits. Future emissions control
programs can be developed to reduce O3 concentrations in Southern
California after the adoption of low-carbon energy scenarios through
reductions targeting residual sources of precursor NOx emissions.
However, these traditional control strategies do not reduce environ-
mental disparities for O3 and NO2 across different race and ethnicity
groups in the Los Angeles region. Relative exposure disparities of MD8H
O3 and 24 h-avg NO2 even increase for the Black and African American
communities under the future emissions control strategies studied here.
Black and African American residents live in the urban core of LA that
has higher NOx concentrations compared to outlying regions. Controls
targeting NOx sources reduce NOx concentrations for the Black resi-
dents, but the O3 chemistry does not transition fully to NOx-limited
conditions in the urban core region, resulting in slower MD8H O3 re-
ductions for Black residents compared to the general population.
Meanwhile, as the absolute 24 h-avg NO2 concentrations aremuch lower
for the general population than for the Black residents, the relative

Fig. 11. Relative disparity of population weighted summertime MD8H O3 and 24hr-avg NO2 exposure (left) and percentage of population exposed to healthy/
unhealthy concentration levels (right) for different race/ethnicity groups under the three control steps with different levels of reduced LAX emissions at LA
under RCP8.5.
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exposure disparities for Black residents respond more slowly than for
other residents. This finding emphasizes the need to consider environ-
mental justice as a main objective when beginning the design of emis-
sions control strategies.
This study demonstrates a novel method to develop controls opti-

mized to reduce exposure disparity, using the source-apportionment
capabilities of the CTMs that were used to design emissions controls.
Emissions from the Los Angeles International Airport (LAX) were iden-
tified as a significant contributor to NO2 exposure disparities for Black
and African American residents in Los Angeles. Sensitivity tests were
conducted by reducing the LAX emissions by 50 % and 100 % under
each of the three traditional control scenarios to confirm this finding.
The sensitivity tests significantly reduced the relative disparities of 24 h-
avg NO2 exposures for Black residents by up to 50 %. The feasibility of
reducing emissions from major airports is beyond the scope of the cur-
rent analysis, but the results demonstrate that the same tools (O3 source
apportionment technique) used to develop control strategies for
compliance with regional air pollution regulations can also be used to
develop effective control strategies to reduce exposure disparities to
photochemical pollutants even in the presence of non-linear chemical
reactions that change response factors across regions. Note that the O3
source apportionment technique can also identify emissions contribu-
tions by geographical regions, but these results are not discussed in the

current study. Future studies should take advantage of these capabilities
to design emissions control programs to reduce exposure disparities.
The choice of background climate scenario did not strongly influence

the projected O3 and NO2 exposure disparities. Results generated under
the RCP4.5 scenario coupled with BAU and GHGAi emission scenarios
were similar to the results from the RCP8.5 BAU and GHGAi scenarios.
As the future period of this study is 2050, the changes to mean surface
air temperature under different climate scenarios are modest, which
limits the impact on O3 concentrations. Studies that look at disparities in
the year 2100 will need to more comprehensively consider background
climate effects on O3 concentrations.
The current study considered criteria pollutant emissions reductions

across the entire state of California with a focus on impacts in the
Southern California region. Changes to criteria pollutant emissions
outside of California were not considered. Emissions reductions outside
California can affect upwind concentrations of pollutants but these
generally have minor influence in Southern California (represented as
the BCIC in the current study). Local emissions sources are the dominant
factor that affects the exposure disparities in Los Angeles under the BAU
and GHGAi scenarios. Assuming that BCICs will not change by an order
of magnitude between present day and 2050, the conclusions about the
sources of O3 and NO2 exposure disparity are not sensitive to the choice
of upwind boundary conditions. Simulations conducted further into the

Fig. 12. Relative disparity of population weighted summertime MD8H O3 and 24hr-avg NO2 exposure (left) and percentage of population exposed to healthy/
unhealthy concentration levels (right) for different race/ethnicity groups under the three control steps with different levels of reduced LAX emissions at SD
under RCP8.5.
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future (~year 2100) may need to consider these changes to upwind
boundary conditions when calculating contributions to exposure dis-
parities, but this analysis is beyond the scope of the current study.
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