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H I G H L I G H T S  

• We updated spatial surrogates that describe location of area-source emissions across California. 
• New spatial surrogates use public datasets and can be projected to future years. 
• Changes to construction surrogates had the largest effect on emissions, followed by employment surrogates. 
• New surrogates improved predicted PM concentrations by 1.5–10% in Sacramento, San Francisco, and Los Angeles in the year 2016.  

A R T I C L E  I N F O   

Keywords: 
Spatial surrogate 
Area-source 
Non-point source 
Construction 
Landuse 

A B S T R A C T   

Ten spatial surrogates describing the detailed locations of air pollution emissions in regional air quality as-
sessments for California were updated/created for the base year 2010 and future years from 2015 to 2040: (i) 
total population, (ii) total housing, (iii) single-family housing, (iv) total employment, (v) service & commercial 
employment, (vi) industrial employment, (vii) agricultural employment, (viii) industrial-related surrogate, (ix) 
off-road construction, and (x) on-road construction surrogates. The first seven surrogates were updated using the 
latest version of census-based datasets at finer resolution. New industrial-related, off/on-road construction 
surrogates were developed using realistic datasets to more accurately describe the location of construction 
projects and industrial facilities. Adoption of the new spatial surrogates caused changes to the spatial distribution 
of air pollution emissions in air quality calculations. The changes to the off-road construction surrogate resulted 
in the largest shift in PM emissions distribution for year 2015, followed by changes to the on-road construction 
surrogate. Industrial-related, service & commercial employment, and off-road construction surrogates all 
contributed to changes in NOx emissions. The changes to SED-derived surrogates were subtle and did not 
significantly influence emissions. Air quality simulations were carried out over the entire year 2016 to examine 
the impact of the new surrogate methodologies on simulated concentration fields. Changes to predicted pollutant 
concentrations followed the same pattern as changes in emissions, which indicates that proximity to sources is a 
dominant factor to determine the impact of spatial surrogates on model performance. The updated spatial sur-
rogates generally improved predicted PM mass and EC concentrations in the Sacramento area (~10% for PM, 
~3% for EC), the Bay Area (~3% for PM, ~1.5% for EC), and the region surrounding Los Angeles (~5% for PM, 
~4% for EC). The updated spatial surrogates also improved predicted NOx concentrations in the core region of 
Los Angeles (~6%). These improvements demonstrate that development and adoption of new methodologies for 
emissions spatial surrogates can improve the accuracy of regional chemical transport models for criteria air 
pollutants.   

1. Introduction 

Chemical Transport Models (CTMs) are used to predict air pollutant 

concentrations over scales ranging from 10’s of meters to 100’s of ki-
lometers (Eastham et al., 2018; González et al., 2018; Hu et al., 2017; 
Joe et al., 2014; Kuik et al., 2016; Li et al., 2016; Schaap et al., 2015; 
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Woody et al., 2016). One of the most important uses of CTMs is to assist 
in the design of emissions control programs that will achieve compliance 
with the National Ambient Air Quality Standards (NAAQS) (Herrera 
et al., 2010; Hogrefe and Rao, 2001; Kelly et al., 2019; Macpherson 
et al., 2017; Saylor et al., 1999; Zhang et al., 2011). Another important 
use of CTMs is to estimate population exposure to various air pollutants 
(Chen et al., 2014; Huang et al., 2018; Laurent et al., 2014, 2013; Ostro 
et al., 2015; Stieb et al., 2016; Van Donkelaar et al., 2015; Wang et al., 
2016). Multiple studies have concluded that the errors introduced into 
CTMs by coarse spatial resolution could affect human health impact 
assessments (Fenech et al., 2018; Thompson and Selin, 2012) and so it is 
desirable to apply CTMs at the finest possible spatial resolution. Accu-
rately describing the location of emission sources is often a critical factor 
that determines the fidelity of this overall process to protect public 
health across the United States (Cohan et al., 2006; Pan et al., 2017; Tan 
et al., 2015; Valari and Menut, 2008; Zheng et al., 2017). 

A top-down approach is widely used to create spatial gridded emis-
sions, and spatial surrogates play an important role in accurately map-
ping aggregated emissions to model grid cells (Bieser et al., 2011; Bun 
et al., 2010; Kuenen et al., 2014; US EPA, 2017). The effort needed to 
prepare spatially accurate emission inventories varies by source cate-
gory that can be broadly summarized as (i) point sources, (ii) mobile 
sources, or (iii) area-sources. Major air pollution point sources in the 
United States have exact latitude and longitude recorded with their 
emissions permits making it easy to specify their exact location in 
emissions inventories. Likewise, mobile sources emit pollutants along 
well-defined roadways that often have monitors to measure traffic vol-
ume (Fameli and Assimakopoulos, 2015; Fu et al., 2017; McDonald 
et al., 2014). In contrast, the location of area-sources (or non-point 
sources) are difficult to describe accurately in emissions inventories 
(Dai and Rocke, 2000; Gkatzoflias et al., 2013; Trombetti et al., 2018). 
Hundreds or thousands of different types of area sources exist in a 

Table 1 
Fraction of total area source emissions allocated by each surrogate.  

Original surrogate Updated surrogate Fraction of area source criteria emissions 

PM TOG NOx CO SOx NH3 

585 Construction equipment 586 Construction 13.1% 0.77% 8.46% 1.50% 0.15%  
587 Off-road construction 
588 On-road construction 

730 Industrial-related 0.26% 6.85% 13.9% 4.36% 12.4% 3.01% 
300 Industrial employment 
250 Total housing  0.41%     
440 Total population 0.10% 5.69% 0.26% 0.33% 0.15% 17.8% 
620 Service & commercial employment  0.21% 2.8% 0.25% 2.35%  
650 Single-family housing  1.20% 0.23% 2.56%    

Fig. 1. Total employment, industrial employment, service & commercial employment, and agricultural employment in the years 2010 and spatial surrogate dif-
ference between 2040 and 2010. 
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typical urban region. As emissions from major point sources and mobile 
sources are reduced, these numerous area sources have emerged as a 
very important category for continued progress towards improved air 
quality (McDonald et al., 2018). Accurately describing the location of 
area source emissions is of paramount importance for the next 

generation of regulatory programs to address current and future con-
ditions in the United States. 

Area-source emission rates in the United States are often estimated 
using a formula such as 

Total Emissions=Activity × (Emissions /Activity)

where “activity” is a measure such as fuel consumed or production rate 
and “(emissions/activity)” describes the release of air pollutants for each 
unit of fuel consumed or product created. Emissions totals are calculated 
for broad spatial zones such as counties or Geographic Area Index (GAI) 
regions. For example, the California Air Resources Board (CARB) divides 
the state into 69 GAI regions based on the intersection of county, air 
basin, and air district political boundaries. The detailed location of area- 
source emissions within each GAI is then described using spatial sur-
rogates that are assumed to be proportional to the target emission rates. 
Statistical activity data such as census data, industry registration, traffic 
information and fuel consumption are commonly used to disaggregate 
various county-level emissions, but the availability of these datasets 
varies by location. Population is the most common dataset used to create 
spatial surrogate (Bieser et al., 2011; Kuenen et al., 2014; Zasina and 
Zawadzki, 2017; Zhao et al., 2012; Zhou et al., 2017) but CARB 
currently uses over 100 additional spatial surrogates depending on the 
exact source-type as summarized in Table S1. 

The purpose of this paper is to update ten important spatial surro-
gates used to specify the location of area-source emissions in California: 
(i) total population, (ii) total housing, (iii) single-family housing, (iv) 
total employment, (v) service & commercial employment, (vi) industrial 
employment, (vii) agricultural employment, (viii) industrial-related 
surrogate, (ix) off-road construction, and (x) on-road construction sur-
rogates. These ten spatial surrogates allocate emissions locations for 
sources ranging from lawn and garden equipment to construction and 
mining to residential/commercial/industrial natural gas combustion. 
The updated surrogates take advantage of publicly available datasets 

Fig. 2. Current and future off-road construction surrogate. Figure (a) shows year 2015 off-road construction surrogate created from a dataset of construction permits. 
Figure (b) shows an example of future year off-road construction surrogate, which is the population growth in the preceding 5 year period. 

Table 2 
NAICS codes and LEHD fields name and definitions.  

Surrogate NAICS 
code 

LEHD 
field 

Definitions 

Agricultural 
Employment 

11 cns01 Agricultural, forestry, fishing and 
hunting 

Industrial 
Employment 

21 cns02 Mining 
22 cns03 Utilities 
23 cns04 Construction 
31–33 cns05 Manufacturing 
42 cns06 Wholesale trade 
48–49 cns07 Transportation and warehousing 

Service & 
Commercial 
Employment 

44–45 cns08 Retail trade 
51 cns09 Information 
52 cns10 Finance and insurance 
53 cns11 Real estate rental and leasing 
54 cns12 Professional, scientific, and 

technical services 
55 cns13 Management of companies and 

enterprise 
56 cns14 Administrative and support and 

waste management and remediation 
services 

61 cns15 Educational service 
62 cns16 Health care and social assistance 
71 cns17 Arts, entertainment, and recreation 
72 cns18 Accommodation and food services 
81 cns19 Other services (except public 

administration) 
92 cns20 Public administration  

Y. Li et al.                                                                                                                                                                                                                                        
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that can be extrapolated to future years. In the current study, new spatial 
surrogates were created for the years 2010, 2015 and extrapolated to the 
years 2020 through 2040. Updated emission spatial patterns were 
compared to previous emission spatial patterns and a regional air quality 
model was used to predict differences in ground-level pollutant con-
centrations resulting from adoption of the updated emissions. The 
findings from this study help to improve the spatial accuracy of emis-
sions inventories in California, which can be used as a model for other 
locations in the United States. 

2. Methods 

The ten spatial surrogates updated in the current paper can be 
divided into three major categories based on their data source and 
emission source related to: socio-economic data (SED), industrial- 
related surrogates, and construction equipment surrogates. The con-
struction equipment surrogate allocates 13.1% of particle matter and 
8.46% of NOx within total area source emissions (Table 1). The indus-
trial employment and industrial-related surrogates are used primarily to 
allocate gaseous emissions, including 13.9% of NOx, 12.4% of SOx, and 
6.85% of TOG (Total Organic Gas). The industrial employment surro-
gate usually serves as a secondary surrogate for industrial emission that 

will be used when the primary surrogate is not available within the 
target geographical region. The SED surrogates accounts for a smaller 
fraction of the emissions across California compared to the construction 
equipment and industrial surrogates, but SED surrogates can still have 
non-negligible impacts on populated areas. Updates to each of the eight 
spatial surrogates are described in the sections below. Two new SED 
surrogates – total employment and agricultural employment were 
created in Section 2.3. 

2.1. Industrial-related surrogate 

The industrial-related surrogate (730) is used to describe the location 
of manufacturing processes and industrial fuel combustion (including 
natural gas not associated with major point sources). The original 
industrial-source spatial surrogate was created from the 2016 Dun and 
Bradstreet Financial Database (DUNS database, http://www.dnb.com/). 
The DUNS database often lists the address for company headquarters 
rather than actual industrial facility locations where emissions are 
released. Moreover, DUNS employment types are classified by the 
Standard Industrial Classification (SIC) system, which groups industries 
based on demand or production of goods. As a result, DUNS employment 
totals include industrial occupations combined with office/managerial 

Fig. 3. Flow chart of methodology for SED spatial surrogates, including total population, total housing, single-family housing, total employment, agricultural 
employment, industrial employment and service & commercial employment. Subscript i is the geographic unit of SED dataset. 
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occupations that may not be correlated with emissions. Approximately 
11% of organizations in the SIC-based DUNS database in California are 
actually not related to industrial process (Fig. S1). In contrast, North 
American Industry Classification System (NAICS) groups are organized 

based on the likeness of the process used to generate goods or services. 
NAICS codes for industrial occupations used in the Longitudinal 
Employer-Household Dynamics (LEHD) “OnTheMap” dataset (United 
State Census Bureau, 2019) are distinct from NAICS codes for 

Fig. 4. Total population, total housing, and single-family housing in the years 2010 and spatial surrogate difference between 2040 and 2010.  
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office/managerial occupations yielding more accurate industrial 
employment totals. Furthermore, LEHD employment locations are 
specified at the actual industrial facility, which more accurately repre-
sents industrial activities than the headquarters location. Adoption of 
the LEHD manufacturing employment to replace the SIC manufacturing 
employment yields a spatial distribution with greater variability in 
Southern California (see Fig. S2). LEHD manufacturing employment 
data is also consistent with major industrial activities permitted under 
the Stormwater Multiple Application and Report Tracking system 
(SMART) database maintained by the California Water Resources Board 
(see Fig. S3). The agreement between these independent indicators of 
industrial activity builds confidence in the accuracy of the LEHD 
manufacturing distribution. 

Future-year industrial-related surrogates were adopted from the 
future-year SED data related to industrial employment generated in 
Section 2.3. Fig. S4 plots the industrial employment distribution 
alongside the location of industrial activities locations from the SMART 
database. The results indicate that the future-year industrial 

employment distribution also captures the spatial pattern of real in-
dustrial activities, building confidence in the approach to use future 
industrial employment as a spatial surrogate for future industrial 
emissions. 

Fig. 1 shows industrial employment surrogates for the years 2010 
and spatial surrogate difference between 2040 and 2010. Total 
employment, industrial employment, and service & commercial 
employment are clustered in urban areas in both current and future 
years. Agricultural employment is significantly lower with most activity 
focused on the San Joaquin Valley in central California. 

2.2. Construction equipment surrogate 

The construction equipment surrogate (585) is used to describe the 
spatial location of equipment burning gasoline and diesel fuel for the 
purpose of creating buildings and roads, and dust from construction 
activities. The current CARB construction equipment spatial surrogate 
blends information from two sources: (i) the change in “impervious 

Fig. 5. Relationship between off-road construction surrogate and PM2.5 EC in off-road diesel emission. Figure (a) and (c) are surrogate difference between original 
585 and updated 587 at Sacramento county and Los Angeles GAI 6059. Figure (b) (d) are PM2.5 EC difference in off-road diesel emission at the same corresponding 
area. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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surfaces (imperviousness)” between 2006 and 2011 from the National 
Land Cover Database (NLCD) and (ii) the California Department of 
Transportation (Caltrans) on-road Truck Network (482) surrogate. The 
combined construction surrogate weights the input impervious surface 
factor by 90% and the Truck Network factor by 10%. Impervious sur-
faces are mainly artificial structures or impenetrable materials such as 
pavements. Changes in imperviousness can be used to identify the 
pattern, nature and magnitude of the change in urban land cover. From 
an emissions perspective, an increase in impervious surfaces is almost 
always associated with construction equipment. However, some con-
struction activities do not change impervious landscape, such as de-
molition and reconstruction activities for existing buildings. The NLCD 
impervious surface data is only available in 5-yr increments which does 
not identify the exact date of the construction activity. The Truck 
Network represents the location of commercial truck routes including 
terminal access to ports and national network routes. The construction 
surrogate assumes that all roads are subject to repair over their lifecycle, 

and so construction emissions are distributed uniformly on this network. 
This approach is reasonable over an averaging time of ~15 years but not 
realistic within in any given year. The surrogate created from the 
combination of NLCD imperviousness and truck network data only 
approximately represents construction activities and it is difficult to 
apply over all potential years of interest. 

The construction equipment surrogate created in the current project 
was separated into three individual surrogates to better represent the 
different types of construction activity: (i) off-road construction surro-
gate (587) represents off-road construction recorded in the SMART 
database; (ii) on-road construction surrogate (588) represents projects 
from Caltrans highway records; and (iii) construction surrogate (586) is 
a combination of 50% surrogate 587 and 50% surrogate 588 as recom-
mended by staff at the California Air Resources Board based on their 
testing of a range of on-road and off-road weighting factors. Surrogate 
586 is hereafter reserved as a backup or secondary surrogate if the 
primary surrogate is not available in certain areas. 

Fig. 6. Relationship between service & commercial employment, industrial-related surrogates and PM2.5 OC, NOx in natural gas emission. Figure (a) and (c) are 
surrogate difference between original and updated service & commercial/industrial-related surrogates at Los Angeles GAI 6059. Figure (b) (d) are PM2.5 OC and NOx 
difference in natural gas emission at the same corresponding area. (For interpretation of the references to color in this figure legend, the reader is referred to the Web 
version of this article.) 
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Diesel engine exhaust is one of the major sources of NOx and PM 
emissions from construction activities (Millstein and Harley, 2009). 
Heavy diesel equipment including tractors, loaders, backhoes, and skid 
steer loaders account for 80% of all construction equipment and 78% of 
annual operating hours in California (California Air Resource Board, 
2020, 2010). Tractors, loaders, backhoes, and skid steer loaders are 
estimated to contribute 67% of total NOx emissions and 70% of total PM 
emissions from statewide construction and mining activities (California 
Air Resource Board, 2020, 2010). Heavy diesel-powered equipment is 
used primarily in large-scale new construction projects or large-scale 
reconstruction/renovation projects as opposed to small scale construc-
tion projects. It is desirable for the off-road construction surrogate to 
represent these major construction/renovation projects as accurately as 
possible. Construction surrogates are also used to spatially allocate PM 
dust emissions during building/road construction. Construction dust 
comes from material, equipment and transportation (Sandanayake et al., 
2016) which are also expected to be highest around large scale con-
struction sites. 

Two updates were made to increase the accuracy of the current-year 
construction equipment spatial surrogate. First, the NLCD impervious 
surface surrogate was replaced with off-road construction project per-
mits from the SMART database that describe the project location (lat/ 
lon), construction type, imperviousness change, and distributed activity 
area. It should be noted that permits in SMART are only required for 
projects larger than 1 acre, meaning SMART data captures large-scale 
construction projects that account for the majority of the heavy-duty 
diesel equipment and dust construction emissions. As a second update, 
the generic Truck Network surrogate was replaced with the actual 

location of highway construction projects described in records publicly 
filed with Caltrans including highway number, the start and stop mile 
along that highway, and the number of active working days in the 
project. These actual off-road and on-road construction locations were 
converted to the standard map projections used for CARB spatial sur-
rogates, leading to increased accuracy in the location of construction 
emissions. 

The off-road construction surrogate is mainly used to distribute 
building construction emissions. Most new buildings are associated with 
an increase in population (either residences or commercial services). A 
statistical analysis of the correlation between the county-level popula-
tion growth between 2010 and 2015 and the number of new construc-
tion projects yields a high correlation (R2 = 0.89), which builds 
confidence in the strength of the association between changes in pop-
ulation and changes in construction activity (see Fig. S5). Therefore, 
future-year off-road construction surrogates are based on population 
increase calculated from the changes in population surrogates generated 
in Section 2.3. Fig. 2 shows a current year and a future year off-road 
construction surrogate. Most of the current-year building construction 
activity occurs in urban areas (Fig. 2(a)), which is consistent with the 
spatial pattern of population difference between years (Fig. 2(b)). 

The 10-year future on-road construction surrogate was created from 
the publicly available State Highway Operation and Protection Program 
(SHOPP) 10-year plan that lists all possible construction projects in the 
coming decade with accurate location and road treatment type. SHOPP 
is a product of information from the Caltrans pavement network analysis 
tool – PaveM system (Caltrans, 2015) and local Caltrans decisions made 
using that information. PaveM uses databases describing pavement type, 

Fig. 7. Relationship between off-road/on-road construction surrogates and PM2.5 total mass emissions from miscellaneous sources at Sacramento county and Los 
Angeles GAI 6059. Figure (a) (b) (d) and (e) are surrogate differences between original 585 and updated 587/588. Figure (c) (f) are differences in PM2.5 total mass 
emissions from miscellaneous sources as defined in Section 2.4. (For interpretation of the references to color in this figure legend, the reader is referred to the Web 
version of this article.) 
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pavement condition, project history, climate, and anticipated future 
load to predict future construction projects for each mile of pavement in 
California, and can be used to plan for the rehabilitation and recon-
struction of all state highways. PaveM is directly integrated into the 
decision making and optimization tools used by Caltrans to allocate 
future funding. For on-road construction projects more than 10 years in 
the future, we adapted the PaveM methodology to create a simplified 
projection of long-term future highway maintenance needs. A statistical 
forecast model was created to calculate the probability of replacing each 
mile of roadway in California based on pavement type, pavement con-
dition, project history (age), climate zone, and anticipated future 
Equivalent Single Axle Loads (ESAL). Each segment of replaced roadway 
can select between different pavement types with probabilities deter-
mined by the same underlying factors that determine likelihood of 
replacement. A series of randomized “Monte Carlo” simulations were 
conducted to predict on-road construction projects by year in California 
through the year 2050. The average emissions from the Monte Carlo 
simulations were adopted as the future year on-road construction sur-
rogate (see section S2.2.2 for additional details). The randomized 
“Monte Carlo” simulations to a certain degree were able to capture that 
the road rehabilitations will likely happen on highways where there are 
higher annual ESALs, such as Los Angeles, the Bay Area, and several 
main highway in California (I-80, I-5, US101, and State Route 99), and 
more severe climate conditions (see Fig. S8). 

2.3. SED surrogates 

SED-derived surrogates distribute emissions related to human ac-
tivities. Total population surrogate 440 serves as a default surrogate if 
no other surrogate is assigned. Seven SED-derived surrogates were 
updated in the current study: total households (250), industrial 
employment (300), total population (440), service & commercial 
employment (620), single-family households (650), total employment 
(744, new), and agricultural employment (745, new). Three datasets 
served as the basis for the new surrogates: (i) data from Metropolitan 
Planning Organizations (MPOs)/local Council of Governments (COGs), 
(ii) data from the Caltrans Statewide Travel Demand Model (CSTDM), 
and (iii) the Longitudinal Employer-Household Dynamics (LEHD) 
“OnTheMap” data (United State Census Bureau, 2019). MPOs/COGs are 
agencies created by federal law to provide regional planning and 
implementation of federal transportation funds to urbanized areas with 
more than 50,000 people. Eighteen MPOs/COGs are designated in Cal-
ifornia (see Table S2), accounting for approximately 98% of the state’s 
population (CALCOG, 2019). CSTDM is a tool used to forecast all per-
sonal travel made by every California resident, plus all commercial 
vehicle travel (Cambridge Systematics Inc, 2014a, 2014b). CSTDM so-
cioeconomic data includes population, housing, and employment within 
specific sectors. MPOs/COGs and CSTDM datasets have total population 
and housing data from the US census data. All three datasets have 
employment census data classified by the North American Industry 
Classification System (NAICS). NAICS is used by Federal statistical 

Fig. 8. Relationship between off-road/on-road construction surrogates and NOx emissions from miscellaneous sources at Sacramento county and Los Angeles GAI 
6059. Figure (a) (b) (d) and (e) are surrogate differences between original 585 and updated 587/588. Figure (c) (f) are differences in NOx emissions from 
miscellaneous sources as defined in Section 2.4. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of 
this article.) 
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Fig. 9. Time series for predicted (original case in green line and updated case in orange line) and observed (black dot) PM2.5 mass, PM2.5 EC, PM2.5 OC and NOx 
concentrations at Los Angeles (shown in figure (a) (b) (c) (d)), Sacramento (shown in figure (e) (f) (g) (h))) during year 2016. (For interpretation of the references to 
color in this figure legend, the reader is referred to the Web version of this article.) 

Table 3 
Annual PM2.5 mass mean fractional bias (MFB) and mean fractional error (MFE) for South California Sites. Bold Indicates improved performance.  

Site Downtown LAa Resedaa Comptona Pico Riveraa 

Site Number 6037 1103 6037 1201 6037 1302 6037 1602 
Statistics MFB MFE MFB MFE MFB MFE MFB MFE 
Original Case 9.89% 39.70% − 34.81% 49.74% − 15.03% 42.35% − 27.58% 42.85% 

Updated Case 16.40% 40.53% − 37.88% 51.84% − 8.05% 40.88% − 21.86% 39.78% 

Site Long Beach (South)a Long Beach near Route 710a Pasadenaa Long Beacha 

Site Number 6037 4004 6037 4008 6037 2005 6037 4002 
Statistics MFB MFE MFB MFE MFB MFE MFB MFE 

Original Case − 0.50% 39.88% − 35.18% 45.70% − 10.46% 36.67% − 7.61% 42.73% 

Updated Case 4.46% 40.35% − 29.56% 42.90% − 4.60% 35.87% − 2.06% 42.58% 

Site Anaheimb Mission Viejob Rubidouxc Mira Lomac 

Site Number 6059 0007 6059 2022 6065 8001 6065 8005 
Statistics MFB MFE MFB MFE MFB MFE MFB MFE 

Original Case − 3.95% 39.11% − 8.53% 39.88% − 48.99% 59.19% − 56.07% 64.23% 

Updated Case 0.45% 38.98% − 6.64% 39.42% − 47.66% 58.48% − 54.32% 62.87% 

Site Downtown San Diegod San Diego militaryd El Cajond Palad 

Site Number 6073 1010 6073 1016 6073 1018 6073 1201 
Statistics MFB MFE MFB MFE MFB MFE MFB MFE 

Original Case 10.69% 38.59% 14.00% 41.77% 0.65% 31.24% − 25.26% 47.06% 

Updated Case 41.91% 53.92% 16.51% 41.88% 4.24% 31.77% − 25.08% 46.88%  

a Los Angeles county. 
b Orange county. 
c Riverside county. 
d San Diego county. 
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agencies to classify businesses for the purpose of collecting, analyzing, 
and publishing statistical data related to the U.S. business economy 
(https://www.census.gov/eos/www/naics/). LEHD provides annual 
employment statistics linking home and work locations (lat-
itude/longitude) at the 2010 census block-level for individual NAICS 
categories, but the LEHD data is only available for historical years 
starting from 2002. 

Updated SED surrogates were created for the base year 2010 and 
future years from 2015 to 2040, in 5 year increments. MPOs/COGs and 
CSTDM forecast future SED to multiple years up to 2050 (available years 
listed in Table S4) based on anticipated growth rate in each area in order 
to plan future infrastructure needs. Each of these local projections uses 
accepted practices for forecasting future trends. MPO/COG forecasts 
were interpolated in time as needed to produce uniform projections 
across California in target future years. Table S8 tests the accuracy of 
this time interpolation procedure for population and housing in the 
years 2010 and 2015 by comparing interpolated values to data from the 
United States Census for 2010 and 2015. Most of MPO/COG regions 
agree with the real census data within 5%. KERN, KINGS, SACOG, and 
SLOCOG had relatively minor errors (<10%), but the overall uncer-
tainty introduced by time interpolation is still minor compared to the 
other uncertainty inherent in the surrogate projections. 

The definitions of total population, total housing, single-family 
housing, and total employment for each MPO/COG and CSTDM are 
relatively consistent and so these spatial surrogates were derived 
directly from the variables provided by each new data source. Data from 
individual MPOs/COGs typically has better spatial resolution and has 
undergone more rigorous quality control than data from CSTDM. MPO/ 
COG data was therefore used wherever possible, with CSTDM data 
filling in locations where MPO data was not available (see Section S2.3.1 
for additional details). The approach used in the current project retains 
the fine-grain detail of the original MPO data wherever possible to in-
crease the accuracy of the final spatial surrogate fields. MPO/COG data 
greatly enhances spatial resolution for moderately urbanized areas, such 
as Sacramento and central CA, but has little impact in highly urbanized 
areas, such as the Bay Area and Southern California. 

Spatial surrogates describing employment are more complicated 
than the SED categories discussed above. The definitions for each 
employment surrogate are shown in Table 2. Each MPO/COG creates its 
own specialized grouped employment categories and/or modifies the 
definition of the standard NAICS employment categories to suit their 
own needs. The LEHD dataset is used in the current study to unify these 
heterogeneous fields into a standard set of spatial surrogates for 
employment in subcategories of agriculture, industry and service & 

Table 4 
Annual PM2.5 mass mean fractional bias (MFB) and mean fractional error (MFE) for North California Sites – Sacramento and Santa Clara counties. Bold Indicates 
improved performance.  

Site Sacramento - Del Paso Manora Sacramento - 1309 T Streeta Folsoma Sacramento Health Departmenta 

Site Number 6067 0006 6067 0010 6067 0012 6067 4001 
Statistics MFB MFE MFB MFE MFB MFE MFB MFE 
Original Case − 17.99% 43.23% 38.24% 57.34% − 0.74% 53.45% 22.48% 47.26% 
Updated Case − 18.76% 43.41% 22.18% 50.49% − 1.08% 53.60% 15.03% 45.25% 

Site San Jose - Konx Avenueb San Jose – Jacksonb Giloryb  

Site Number 6085 0005 6085 0006 6085 0002  
Statistics MFB MFE MFB MFE MFB MFE   
Original Case − 6.40% 38.52% − 20.66% 37.53% 15.70% 52.06%   
Updated Case − 3.56% 38.04% − 17.95% 36.68% − 16.55% 54.01%    

a Sacramento county. 
b Santa Clara county. 

Table 5 
Annual PM2.5 elemental carbon (EC) and PM2.5 organic carbon (OC) mean fractional bias (MFB) and mean fractional error (MFE) for all available California sites. 
Bold Indicates improved performance.  

Site Downtown LAa Lebec (rural)a 

Site Number 6037 1103 6037 9034 
Species PM2.5 EC PM2.5 OC PM2.5 EC PM2.5 OC 
Statistics MFB MFE MFB MFE MFB MFE MFB MFE 
Original Case − 5.49% 33.38% 57.13% 59.55% − 46.88% 86.60% − 72.51% 96.25% 

Updated Case 0.64% 32.09% 59.30% 61.41% − 48.32% 87.73% − 73.17% 96.84% 

Site El Cajonb El Cajon 2b 

Site Number 6073 1018 60731022 
Species PM2.5 EC PM2.5 OC PM2.5 EC PM2.5 OC 
Statistics MFB MFE MFB MFE MFB MFE MFB MFE 
Original Case − 67.75% 76.55% − 12.86% 45.51% − 82.37% 83.22% − 67.05% 68.24% 

Updated Case − 62.56% 72.31% − 9.30% 44.42% − 80.92% 81.60% − 67.09% 68.27% 

Site Sacramento - Del Paso Manorc San Jose - Knox Avenued 

Site Number 6067 0006 6085 0005 
Species PM2.5 EC PM2.5 OC PM2.5 EC PM2.5 OC 
Statistics MFB MFE MFB MFE MFB MFE MFB MFE 

Original Case − 52.90% 70.77% − 64.07% 70.26% − 4.02% 44.73% − 12.31% 31.98% 

Updated Case − 49.82% 68.97% − 63.84% 70.11% − 2.70% 44.48% − 13.23% 31.70%  

a Los Angeles county. 
b San Diego county. 
c Sacramento county. 
d Santa Clara county. 

Y. Li et al.                                                                                                                                                                                                                                        

https://www.census.gov/eos/www/naics/


Atmospheric Environment 247 (2021) 117665

12

commercial within each county. The ratio of each individual LEHD 
sector to the LEHD lumped category total provides a profile that can be 
multiplied into the MPO/COG or CSTDM lumped categories to estimate 
employment which satisfy definitions in Table 2. An example given in 
Fig. 3 shows how to calculate agricultural employment category (NAICS 
code 11) in MPOs/COGs area Southern California Association of Gov-
ernments (SCAG). SCAG combined mining employment (NAICS code 
21) and agricultural employment in a single native field, which is the 
original variable (Xi’) without invoking other datasets. Subscript i rep-
resents each geographic unit in MPOs/COGs or CSTDM, census block in 
MPOs/COGs and Traffic Area Zone in CSTDM. The ratio of agricultural 
employment (11) in SCAG data (ri) can be estimated as LEHD agricul-
tural sector (11) divided by LEHD lumped sector (11 + 21). Thus, the 
agricultural employment (11) in SCAG (Xi) can be calculated by multi-
plying the ratio of agricultural employment to the original variable (Xi 
= Xi’ * ri). These NAICS employment totals are then recombined into the 
categories defined in Table 2 (see Section S2.3.2 for additional details). 

Figs. 1 and 4 illustrates SED surrogates in the years 2010 and spatial 
surrogate difference between 2040 and 2010. All current and future year 
SED surrogates are concentrated in urban areas including the Bay Area, 
Sacramento, Los Angeles, Fresno, and Bakersfield along Highway 99. 
The spatial patterns for socioeconomic surrogates (other than agricul-
tural employment) expand outward from urban centers through year 
2040. 

2.4. Surrogate evaluation methods 

Gridded surrogates were generated using the spatial allocator tool 
from United States Environmental Protection Agency (EPA) (CMAS, 
2019). The spatial allocator is a set of programs that allows users to 
generate data files related to emissions and air quality modeling without 
requiring the use of a commercial Geographic Information System (GIS) 
package. Given a map projection, domain boundaries, and weight 
shapefiles (developed in Section 2), the spatial allocator can generate 
gridded spatial surrogates that can be directly used in emission models, 

such as the Sparse Matrix Operator Kernel Emissions (SMOKE) (CMAS, 
2016). In this project, the spatial allocator was applied with the Lambert 
Conformal map projection (− 120.5◦ longitude, 37◦ latitude, standard 
parallels 30◦ and 60◦) and 4 km spatial resolution. Domain boundaries 
were specified based on the 69 Geographic Area Index (GAI) region 
shapefile (https://www.arb.ca.gov/ei/gislib/gislib.htm) which is 
consistent with previous statewide emissions inventories from ARB. 

The raw spatial surrogates produced in the current project were 
combined with emissions inventories to analyze how the updates would 
influence the spatial distribution of actual emissions compared to the 
original CARB surrogates. These two cases are hereafter referred to as 
“updated” and “original”. 

The new spatial surrogates for the year 2015 were processed using 
SMOKE along with the raw emissions for the year 2016 to generate 
gridded emissions for six pollutants: CO, NOx, TOG, NH3, SOx, and PM. 
These emissions were then processed with the UCD emissions processing 
system (EMINV) to create model-ready inputs including speciated VOCs 
and size- and composition-resolved PM. Emissions were segregated into 
nine source categories for easier interpretation of the results: (i) on-road 
gasoline, (ii) off-road gasoline, (iii) on-road diesel, (iv) off-road diesel, 
(v) woodsmoke, (vi) food cooking, (vii) aircraft emissions, (viii) natural 
gas, and (ix) miscellaneous, which are emissions not included in the 
categories listed above. Emissions were used by the UCD/CIT air quality 
model applied to the entire state of California. 

3. Results and discussion 

3.1. Relationships between surrogates and emissions 

The relationship between the spatial pattern of surrogates and 
emissions was analyzed in two detailed case studies for Sacramento 
county and Los Angeles GAI 6059. Sacramento has the largest shift of 
predicted PM mass concentration in response to the adoption of updated 
spatial surrogates. Los Angeles is one of the most populated areas in 
California. Each emissions source within these two study regions is 

Table 6 
Annual NOx mean fractional bias (MFB) and mean fractional error (MFE) for sites with changes in model performances. Bold Indicates improved performance.  

Site Comptona Pico Riveraa Long Beach (Hudson) a Long Beach near Route 710a 

Site Number 6037 1302 6037 1602 6037 4006 6037 4008 
Statistics MFB MFE MFB MFE MFB MFE MFB MFE 
Original Case 26.70% 56.27% − 13.89% 43.17% − 6.14% 44.45% − 34.31% 62.46% 

Updated Case 32.50% 58.27% − 7.41% 42.64% − 1.55% 43.46% − 29.29% 59.71% 

Site Santa Claritaa Lancaster - Division Streeta Glendoraa Anaheimb 

Site Number 6037 6012 6037 9033 6037 0016 6059 0007 
Statistics MFB MFE MFB MFE MFB MFE MFB MFE 

Original Case − 21.61% 43.19% − 60.96% 93.20% − 24.34% 41.79% 21.87% 53.14% 
Updated Case − 40.17% 55.89% − 65.05% 97.37% − 15.42% 37.41% 25.79% 54.41% 

Site Anaheim Near-roadb Mira Lomac Rubidouxc Lake Elsinorec 

Site Number 6059 0008 6065 8005 6065 8001 6065 9001 
Statistics MFB MFE MFB MFE MFB MFE MFB MFE 

Original Case − 73.97% 74.89% − 19.64% 44.63% − 16.37% 56.38% − 31.59% 50.69% 
Updated Case − 70.38% 71.39% − 17.97% 44.10% − 14.96% 56.04% − 36.32% 54.19% 

Site Alpined Donovand El Cajond Sacramento-Goldenland Ct. e 

Site Number 6073 1006 6073 1014 6073 1018 6067 0014 
Statistics MFB MFE MFB MFE MFB MFE MFB MFE 

Original Case − 43.25% 60.27% − 5.02% 55.20% − 26.48% 47.06% 49.31% 57.73% 

Updated Case − 40.65% 58.13% − 14.79% 56.22% − 20.86% 43.72% 45.14% 55.06%  

a Los Angeles county. 
b Orange county. 
c Riverside county. 
d San Diego county. 
e Sacramento county. 
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typically affected by a combination of spatial surrogates as described 
below. 

Fig. 5 illustrates how off-road diesel emissions are mainly affected by 
updated off-road construction equipment surrogates 585 and 587 (see 
Fig. S9 and Fig. S12). Since surrogates only allocate emissions within 
each GAI region, Fig. 5(a) and (c) show the fractional change in each GAI 
total between original construction surrogate 585 and revised off-road 
construction surrogate 587. Fig. 5(b) and (d) show the change in abso-
lute PM2.5 EC emissions. A strong spatial correlation is apparent between 
changes to off-road construction equipment surrogate 587 and changes 

to PM2.5 EC emissions from off-road diesel vehicles. Fig. 5(a) and (b) 
both reflect a major increase in the area northeast of Sacramento be-
tween two major highways. Fig. 5(c) and (d) also illustrate increasing 
emissions around major highways in the urban LA area, and major 
decrease northwest of LA. PM2.5 EC from off-road diesel engines con-
tributes strongly to total PM2.5 EC concentrations. Changes to spatial 
surrogate 587 are therefore expected to significantly influence predicted 
overall PM2.5 EC spatial patterns in cities. 

California’s emissions inventory treats a subset of the industrial and 
commercial natural gas combustion as area sources allocated using 

Fig. 10. Change in predicted ground-level concentrations due to the adoption of new spatial surrogates in norther California. Blue indicates concentrations decrease 
while red indicates concentration increase as shown by the key below each panel. Circles quantify change in model performance when compared to measurements at 
monitoring locations. Green circles indicate improved performance, red circles indicate degraded performance relative to the original case. 
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spatial surrogates 730 (industrial-related) and 620 (service & commer-
cial employment), respectively. Fig. 6 and Fig. S15 illustrate how 
changes to updated surrogates 730 and 620 work together to change the 
pattern of natural gas combustion emissions in Los Angeles and Sacra-
mento. Fig. 6(c) and (b) (d) show a strong spatial correlation between 
changes in surrogate 730 and natural gas combustion PM2.5 OC and NOx 
emissions in Los Angeles. Note that increases in surrogate 730 are 
balanced by decreases in surrogate 620 in some locations (see Fig. 6(a) 
(c)). Changes to surrogate 730 result in significant changes to PM2.5 OC 
and NOx in natural gas combustion emissions in LA area, ~0.35 μg/m2/ 
min for PM2.5 OC and ~1 ppb/min⋅m for NOx. The updated surrogate 
730 also alters the spatial pattern of natural gas combustion emission in 
the San Francisco Bay Area (see Fig. S10). Updates to surrogate 620 
modify the spatial pattern of natural gas combustion emissions in Sac-
ramento (Fig. S15), but changes are modest because past census data 
already produced accurate spatial patterns for surrogate 620 in the 
original inventory. 

Fig. 7 illustrates how changes to surrogate 587 and 588 influence the 
spatial pattern of PM2.5 total mass emissions from miscellaneous sour-
ces. In general, off-road/on-road construction equipment surrogates 
587/588 work together on changes in PM2.5 total mass, and off-road 
surrogate 587 has a relatively larger impact than on-road surrogate 
588. In Sacramento county (see Fig. 7(a) (b) and (c)), surrogates 587/ 
588 have opposite change patterns northeast of Sacramento. The impact 
from changes to off-road surrogate 587 are weakened by changes to on- 
road surrogate 588. This causes a significant decrease for PM2.5 total 
mass emissions in downtown Sacramento (~6 μg/m2/min). In Los 
Angeles (see Fig. 7(d) (e) and (f)), off-road/on-road construction 

surrogates both increase PM mass emissions around the LA urban area, 
and decrease PM mass emissions to the northwest of downtown LA. The 
identical shift from surrogate 587/588 increased PM mass emissions in 
the LA urban area (~2.5 μg/m2/min), although surrogate 587/588 has 
less change compared to other regions across the state. PM2.5 total mass 
emissions from construction contributes strongly to total PM2.5 mass 
emissions. Changes to construction spatial surrogate 587/588 are 
therefore expected to significantly influence the spatial pattern of pre-
dicted overall PM2.5 total mass concentrations. 

Fig. 8 shows how changes to off-road construction surrogate 587 and 
industrial-related 730 affect NOx emissions from miscellaneous sources 
differently across the state. In Sacramento county, changes in NOx 
follow the pattern of surrogate 587. However the absolute value of 
changes in NOx emissions is minor, because decreases in surrogate 587 
are typically balanced by increases in surrogate 730 (see Fig. 8(a) (b) 
and (c)). Changes to the spatial pattern of miscellaneous NOx emissions 
stem from a combination of changes in surrogate 730 and surrogate 587 
in the region surrounding Los Angeles, with a maximum shift of ~1.5 
ppb/min⋅m. These patterns add to the shifts in the spatial pattern of NOx 
emissions associated with natural gas combustion (Fig. 6). 

The specific trends illustrated in Figs. 5–8 are generally apparent 
throughout California. Changes for SED spatial surrogates are concen-
trated in cities or along highways where population is highest. In 
contrast, most of the changes in the spatial distribution of the industrial 
surrogates are found outside of the major urban areas. The off-road 
construction spatial surrogate 587 reflects the shift to project-based 
records as opposed to changes in impervious surfaces and is more 
concentrated within cities associated with urban renovation projects 

Fig. 11. Change in predicted ground-level concentrations due to the adoption of new spatial surrogates in southern California. Blue indicates concentrations decrease 
while red indicates concentration increase as shown by the key below each panel. Circles quantify change in model performance when compared to measurements at 
monitoring locations. Green circles indicate improved performance, red circles indicate degraded performance relative to the original case. 
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(see Fig. S12). The on-road construction surrogate 588 also reflects the 
shift to describing emissions from individual road construction projects 
instead of evenly distributing road construction emissions along the 
entire Truck Network. The intensity of the construction spatial surrogate 
generally decreases slightly along major highways throughout Califor-
nia but increases in isolated locations along those highways (Fig. S13). 
The updated industrial-related surrogate 730 generally concentrates 
industrial activity from a diffuse region into a concentrated source, 
perhaps associated with a central facility (see Fig. S14). The updated 
surrogates mainly change the location of off-road diesel emissions, 
natural gas emissions, and miscellaneous emissions. In general, 
“miscellaneous emissions” of PM2.5 total mass, and NOx have the 
strongest response to the adoption of updated spatial surrogates 
(Fig. S11). 

3.2. Surrogates performance: air quality model predictions 

The updated spatial surrogates created in the current study were 
tested using the source-oriented UCD-CIT air quality model (Kleeman 
and Cass, 2001; Ying et al., 2008) for California during the year 2016. A 
single 24 km domain covering the entire state and two nested 4 km 
domains covering major population centers in northern California and 
southern California were selected for the analysis. Model simulations 
were carried out using both the original spatial surrogates and the 
updated spatial surrogates. Measurement data was downloaded from 
EPA website: https://aqs.epa.gov/aqsweb/airdata/download_files. 
html. There are 17 measurement sites in the southern California 
domain and 13 measurement sites in the northern California domain to 
evaluate PM2.5 model performance; six sites across the state are avail-
able to evaluate PM2.5 EC and OC predictions; 31 sites in southern 
California and 18 measurement sites in northern California are available 
to evaluate NOx predictions. 

Fig. 9 shows the time series of PM2.5 mass, EC, OC and NOx daily 
average concentration at central Los Angeles and Sacramento during the 
year 2016 using the original spatial surrogates (orange line) and the 
updated spatial surrogates (green line). Observed values are illustrated 
as black dots. Predicted concentrations based on the original and 
updated spatial surrogates are similar. Both cases capture the routine 
PM2.5 mass, EC, OC and NOx concentrations with reasonable accuracy 
but they fail to capture the peak PM2.5 mass concentration events which 
mostly occur in wintertime. Total PM2.5 mass has relatively greater 
differences between original and updated cases compared to species 
such as PM2.5 EC. Changes to spatial surrogates have minor effect on 
predicted PM2.5 OC and NOx concentrations at the 2 measurement sites. 

Statistical analysis was carried out for PM2.5 mass, PM2.5 EC, PM2.5 
OC, NOx, PM2.5 nitrate, PM2.5 sulfate, and two metals – Cu and Fe at all 
available measurement sites. PM2.5 nitrate, sulfate, Fe and Cu do not 
respond strongly to the updated spatial surrogates and will not be dis-
cussed further in the present analysis. PM2,5 mass Mean Fractional Bias 
(MFB) and Mean Fractional Error (MFE) are shown in Table 3 for 
southern California and Table 4 for northern California. PM2.5 EC and 
OC MFB/MFE for all available California sites are shown in Table 5. NOx 
MFB/MFE for measurement sites with changed model performance are 
listed in Table 6. In general, air quality simulations carried out over the 
entire year 2016 determined that the effects of the updated spatial 
surrogates on predicted PM and NOx concentrations at measurement 
sites across the state are positive in most populated area, including the 
South Coast Air Basin (SoCAB) (including Los Angeles, Orange and 
Riverside counties), the region surrounding Sacramento, and the region 
south of San Francisco. PM2,5 total mass has ~5% of improvement at 
most locations sites in the SoCAB (see Table 3); ~10% of improvement 
at downtown Sacramento (see site 6067 0010 and 6067 4001 in 
Table 4); and ~3% of improvement at San Jose (south of San Francisco). 
PM2,5 EC improves by ~4% at two sites in southern CA, and ~2% at two 
sites in northern CA (see Table 5). NOx model performance improves 
(~6%) southeast of LA county, where industrial-related surrogate 730 

has the largest changes (see Table 6). Updated spatial surrogates have 
minor impact on predicted concentrations of NOx in central and 
northern California. Likewise, updated spatial surrogates have minor 
impact on predicted concentrations of PM2,5 mass, OC, and EC in central 
California (including Fresno and Bakersfield). 

The spatial pattern of change caused by the adoption of the updated 
spatial surrogates can be understood more clearly by plotting the results 
over the entire region. Fig. 10 shows the change in the predicted annual- 
average PM2.5 mass, EC, OC and NOx concentrations in the northern 
California domain due to the adoption of the updated spatial surrogates. 
Red grid squares represent areas of increased concentrations while blue 
grid squares represent areas of decreased concentration. The measure-
ment sites in the model domain are represented as circles, with green 
coloring indicating improved performance and red coloring indicating 
degraded performance due to the adoption of the new surrogates. In 
Fig. 10(a), PM2.5 mass concentrations decrease by 1–2 μg m− 3 in the 
region west of Sacramento in response to the updated surrogates, lead-
ing to a 8–14% improvement at two sites (60670010, 60674001) in 
Sacramento. PM2.5 EC predictions in Sacramento also improve by ~3% 
(Fig. 10(b)). Only one site (60670014) out of six in Sacramento has ~4% 
improvement for NOx (Fig. 10(c)). PM2.5 concentrations in San Jose are 
also influenced by the updated spatial surrogates, with generally higher 
PM2.5 mass concentrations throughout the urban region. The two mea-
surement sites in San Jose both have ~3% improvement. PM2.5 EC in 
San Jose slightly increased and improved ~1.5% in response to the 
updated spatial surrogates. 

Fig. 11 displays the change in predicted annual-average PM2.5 mass, 
EC and OC concentrations attributed to the updated spatial surrogates in 
southern California. Updated spatial surrogates have relatively larger 
impact in southern California compared to northern California. Fig. 11 
(a) shows that PM2.5 mass concentrations in the central region of Los 
Angeles increase by approximately 0.5 μg m− 3 when the updated spatial 
surrogates are adopted, bringing the predictions into closer agreement 
with measured values at stations throughout this area. The overall 
spatial trends shown in Fig. 11(b) and (c) are similar to the trends shown 
in Fig. 11(a), but the performance of PM2.5 EC improves (or does not 
change) at all available measurement sites when the updated spatial 
surrogates are adopted. PM2.5 OC has little response to updated surro-
gates. EC is a primary PM component and OC is dominated by primary 
emissions in the current simulations. Both primary emissions and sec-
ondary formation contribute to total PM2.5 mass. This suggests that the 
complex pattern of increasing and decreasing performance illustrated in 
Fig. 11(a) may be related to secondary PM formation rates and offsetting 
model errors. Fig. 11(c) shows that NOx concentrations increase by 
approximately 2.5 ppb in Los Angeles area in updated case, bring the 
prediction into closer agreement with measured values in this area. 

The PM total mass, EC, OC and gas-phase NOx concentration results 
summarized in Figs. 10 and 11 are consistent with the changes in off- 
road diesel, natural gas combustion, and miscellaneous emissions dis-
cussed in Section 2. These patterns indicate that proximity to sources is a 
dominant factor that determines the impact of spatial surrogates on 
model performance. Off-road construction surrogate 587 and on-road 
construction surrogate 588 induce the largest change in predicted PM 
concentrations, followed by more modest changes associated with 
industrial-related surrogate 730, service & commercial employment 
surrogate 620 and single-family housing surrogate 650. Off-road con-
struction surrogate 587 and industrial-related surrogate 730 induce the 
largest change in predicted NOx concentrations in southern California. 
Altered concentrations are associated with emissions from construction 
equipment, natural gas combustion, and industrial processes. 

4. Conclusions 

Spatial surrogates including total population, total housing, single 
family housing, total employment, service & commercial employment, 
industrial employment, agricultural employment, industrial-related, off- 
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road construction, and on-road construction were updated for use with 
California emissions inventories. SED surrogates were updated using the 
latest version of census-based datasets at finer resolution. Off-road 
construction, on-road construction and industrial-related surrogates 
were developed using new methods to more accurately describe the 
location of construction projects and industrial facilities. All surrogates 
were created for the past years 2010 and 2015 and projected in 5- year 
increments to the year 2040. 

The changes to the off-road construction spatial surrogate caused the 
largest shift in the distribution of PM emissions in the year 2015, fol-
lowed by changes to the on-road construction spatial surrogate. These 
changes logically manifested as altered emissions patterns associated 
with construction sources. The changes to NOx emissions varied with 
location. In southern California, the changes to the industrial-related 
surrogate resulted in the largest shift in the distribution of NOx emis-
sions in the year 2015. In northern California, changes to service & 
commercial employment, off-road construction equipment, and 
industrial-related surrogates are balanced leading to little impact on the 
spatial pattern of NOx emissions. The redistribution of industrial emis-
sions based on a more exact description of industrial employment 
resulted in some isolated shifts in industrial emissions but no systematic 
pattern was observed. Changes in the spatial distribution of SED-derived 
surrogates, caused a slight reduction of emissions in the core of small 
cities and an increase in emissions in surrounding areas. SED changes 
were subtle and did not significantly influence emissions. 

Air quality simulations carried out over the entire year 2016 deter-
mined that the updated spatial surrogates generally improve predicted 
PM mass and EC concentrations in Sacramento area (~10%), the Bay 
Area (~3%), and the region surrounding Los Angeles (~5%). Adoption 
of the updated spatial surrogates also improved predicted NOx con-
centrations in the core region of Los Angeles (~6%). These improve-
ments demonstrate that adoption of new methodologies to estimate the 
location of construction equipment related surrogates (separate to off- 
road and on-road) and industrial-related surrogates are feasible at 4 
km spatial resolution. Moreover, the updated construction-related and 
industrial-related surrogates may be suitable for even greater spatial 
resolution in future studies. The methods used to increase the accuracy 
of emissions locations in the current years may be extended to study 
emissions predictions and public health effects in future years. 

It should be noted that spatial surrogates are an approximate 
approach for distributing area-source emissions. Even perfectly accurate 
spatial surrogates may not be perfectly correlated with emissions rates, 
and so this method has inherent uncertainty that varies depending on 
the exact emissions sources. Future applications of image recognition 
and GPS data may enable more accurate tracking of detailed activities 
that generate area-source emissions, but appropriate safeguards must be 
used to balance privacy vs. utility before widespread adoption of these 
techniques. Future studies should investigate these issues in order to 
improve the accuracy of area-source emissions inventories. 
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