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H I G H L I G H T S  

• Air pollution impacts of low-carbon transportation fuel are evaluated in Oregon. 
• Policies to reduce fuel carbon intensity reduce air pollution mortality. 
• Annual public-health savings are equivalent to $80M/yr. 
• Exposure disparities based on race and income are reduced by 14–20%. 
• Spatial distribution of each racial group determines air quality benefits.  
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A B S T R A C T   

The public health burden of traffic-related air pollution falls most heavily on the population living closest to 
major transportation corridors, which leads to exposure disparities between different socio-economic groups 
across the United States. The state of Oregon has adopted climate policies to reduce transportation fuel carbon 
intensity (CI). These climate policies have the potential co-benefit of reducing air pollution exposure disparities 
for different socio-economic groups. Here we analyze the emissions and air quality outcomes of three future year 
(2035) scenarios for transportation fuels in Oregon: (i) a Business as usual (BAU) scenario, (ii) a Clean Fuels 
Program (CFP) scenario that represents adoption and successful achievement of a proposed 25% reduction in 
carbon intensity in 2035; and (iii) a maximum ambition scenario (CFP MAX) that builds on the CFP scenario to 
achieve a 37% CI reduction by adopting low carbon fuels more aggressively, especially for heavy duty vehicles. 
Transportation emissions under all scenarios were estimated using the MOVES model for every county in Oregon. 
Detailed emissions with 4 km spatial resolution were then developed for each scenario by scaling the National 
Emissions Inventory (NEI) for the year 2017 based on the emissions derived from the MOVES analysis. Air 
quality in 2035 was simulated using the UCD/CIT chemical transport model that enables a detailed analysis of 
PM2.5 and PM0.1 components and sources. Exposure fields were analyzed using the BenMAP model to predict 
public health outcomes. Environmental justice analysis was conducted by race/ethnicity categories and income 
categories obtained from the American Community Survey (ACS). Results suggest that adoption of low-carbon 
transportation fuels will improve air quality in Oregon, yielding public health benefits equivalent to approxi-
mately $80M/yr. Adoption of low carbon transportation fuels will also reduce disparities in exposure to 
transportation-related air pollution between residents in different race/ethnicity categories by ~14% in Portland 
and ~20% in Salem. Adoption of low-carbon fuels reduces PM2.5 mass disparity by 10% in Salem, but does not 
have a significant effect in Portland, because on-road mobile sources contribute to less than 3% of the total PM2.5 
mass disparity in this city. The analysis reveals that the spatial distribution of each race/ethnicity group in each 
city is the primary factor that determines the impact of low carbon fuel adoption on exposure disparity.   
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1. Introduction 

Air pollution is associated with 7 million excess deaths across the 
globe each year, with 4.2 million of those losses attributed to outdoor air 
pollution (World Health Organization, 2021). Exposure to airborne 
particles with diameters less than 2.5 μm (PM2.5) drives most of this air 
pollution mortality (Lelieveld et al., 2015). Toxicology studies show that 
ambient PM2.5 can be inhaled deep into the lungs, penetrate the 
gas-exchange region, and trigger inflammation. The smallest particles in 
the ultrafine size range with diameter less than 0.1 μm (PM0.1) can pass 
though the respiratory barrier, and enter our circulatory system (Churg 
and Brauer, 2012; Pinkerton et al., 2000; Wang et al., 2013; Xing et al., 
2016). Numerous epidemiological studies show that PM2.5 is closely 
associated with multiple adverse health effects in addition to premature 
death, including asthma, and cardiopulmonary diseases (Cohen et al., 
2005; Goodkind et al., 2019; Krewski et al., 2009; Lepeule et al., 2012). 
Recent studies have found associations between health effects and PM2.5 
mass at levels as low as 5 μg/m3, leading the World Health Organization 
(WHO) to lower their PM2.5 annual mean guideline value from 10 μg/m3 

to 5 μg/m3 (World Health Organization, 2021). 
Many environmental justice studies have documented the relation-

ship between air pollution exposure, income, and race/ethnicity in the 
United States (Anderson et al., 2018; Banzhaf et al., 2019; Bell and 
Ebisu, 2012; Bravo et al., 2016; Colmer et al., 2020; Cushing et al., 2015; 
Liu et al., 2021; Miranda et al., 2011; Perlin et al., 2002; Tessum et al., 
2021; Thakrar et al., 2020; Thind et al., 2019). Air pollution exposure 
disparities cause a public health burden for the groups with 
higher-exposure that inhibits their upward financial mobility and adds 
to the public health cost. The elimination of air pollution exposure 
disparities would better allow all people to reach their full potential in 
society. 

The urgent need to address climate change offers a once-in-a- 
generation opportunity to redesign energy systems to simultaneously 
meet several objectives, including reduced emissions of Greenhouse 
Gases (GHGs), reduced emissions of air pollutants, and reduced levels of 
air pollution exposure disparity. Transportation emissions are a focal 
point for each of these objectives in the Western US, including California 
and Oregon, where residents rely on personal vehicles for mobility and 
heavy-duty vehicles for freight transport. The emissions from vehicles 
account for 30–40% of total GHG emissions (California Air Resource 
Board, 2021; Oregon, 2018) and the production and refining of 
petroleum-based transportation fuels is also a significant GHG source. 
There is a strong body of evidence (Wang et al., 2009) in the scientific 
literature confirming the net improvements in air quality associated 
with a transition from petroleum-fueled vehicles to non-petroleum al-
ternatives (mainly caused by reduced tailpipe emissions) (Choma et al., 
2021; Tessum et al., 2014). 

California has adopted a suite of policies to reduce air pollutant and 

GHG emissions from motor vehicles including tailpipe emission stan-
dards and Zero-Emission Vehicle (ZEV) requirements. Many of these 
policies have been adopted by other states, including Oregon. California 
launched the Low Carbon Fuel Standard (LCFS) in 2010 to encourage 
producers and importers of fuels to reduce their carbon intensity (CI) or 
procure lower-CI alternatives to meet the state’s GHG emission target. 
Each of these climate mitigation regulations simultaneously reduced 
criteria pollutant and GHG emissions, leading to a reduction in envi-
ronmental exposure disparity (see for example (Lewis et al., 2019; Li 
et al., 2022a,b; Sperling and Eggert, 2014; Winkler et al., 2018)). 

The state of Oregon adopted it’s Clean Fuels Program (CFP) (based 
largely on California’s LCFS) in 2010, though the program did not take 
effect until 2015. To date, Oregon’s CFP has increased the share of non- 
petroleum fuels from approximately 7% to over 9% (Mazzone et al., 
2021). In 2020, Governor Kate Brown issued Executive Order 20-04, 
which instructed state agencies to adopt a number of policies designed 
to further reduce the state’s GHG emissions. Among them was an 
extension of Oregon’s CFP with targets of at least 20% CI reduction in 
2030 and 25% in 2035. To achieve this goal, the Oregon Department of 
Environmental Quality (DEQ) proposed several future low-carbon fuel 
scenarios that have the potential to reduce GHG emissions and improve 
air quality. 

Here, we quantify the benefits to air quality and the reduction in 
exposure disparities associated with Oregon’s clean transportation fuel 
program. Three future year 2035 scenarios are evaluated: a reference 
business as usual (BAU) scenario that accounts for current 
transportation-related regulations and trends, a CFP scenario (abbrevi-
ated as CFP) that corresponds to the proposed 25% reduction in trans-
portation carbon intensity (CI) described by the Oregon CFP program, 
and a CFP MAX scenario (abbreviated as CFP MAX), which reduces 
transportation CI by 37% by replacing petroleum with renewable diesel 
for medium-/heavy-duty vehicles. CFP and CFP MAX scenarios were 
developed by the Oregon DEQ (ICF, 2021). Emissions with a 4 km spatial 
resolution are developed for each scenario and a regional chemical 
transport model (CTM) is used to predict air pollution exposure fields. 
Public health benefits associated with reduced transportation-related 
emissions in each scenario are calculated using standard epidemiolog-
ical relationships provided by the EPA’s Environmental Benefits Map-
ping and Analysis Program – Community Edition (BenMAP) program 
(Sacks et al., 2018). Air pollution exposures in the year 2035 are 
calculated for five household income groups and four household 
race/ethnicity groups defined by the American Community Survey 
(ACS). Environmental inequities are estimated for each socio-economic 
group in each emissions scenario. The reduction in air pollution expo-
sure disparity under each GHG mitigation scenario is then discussed. 
The results of this study serve as a guide for other countries/-
states/regions that may wish to use similar CI-based fuel policies for 
GHG emissions reductions. 

Fig. 1. Flow chart of Oregon Low-carbon Fuel Scenarios Analysis.  
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2. Methodology 

On-road criteria pollutant emissions for the 2017 basecase, the 2035 
BAU, the 2035 CFP, and the 2035 CFP MAX scenarios were developed 
using the EPA’s Motor Vehicle Emission Simulator (MOVES) model (US 
EPA, 2021). The on-road emissions predicted by MOVES reflect ex-
pected reductions from the replacement of existing fuels with 
low-carbon alternatives. The post-emissions behavior of atmospheric 
pollutants and the resultant exposure fields were predicted using the 
UCD/CIT regional chemical transport model (CTM) (Kleeman et al., 
1997; Venecek et al., 2019; Ying et al., 2007; Yu et al., 2019). The public 
health benefits of reduced CI were predicted using BenMAP-CE. Finally, 
an Environmental Justice (EJ) analysis was conducted based on air 
pollution exposure and household race/household income categories 
described by the American Community Survey (ACS) (United States 
Census Bureau, 2020). Fig. 1 illustrates the flow of data across the entire 
study, with further details presented in the following sections. 

2.1. Developing the on-road emission inventory using MOVES 

County-level emissions including criteria air pollutants for the 2017 
basecase, 2035 BAU, 2035 CFP and 2035 CFP MAX scenarios were 
generated with MOVES 3.0.1(US EPA, 2021). To better quantify Ore-
gon’s transportation emissions in the future, the MOVES model was 
calibrated by incorporating Oregon-specific activity forecast data, such 
as vehicle miles traveled (VMT) and vehicle population, rather than 
relying on the MOVES default data (see Tables S1 and S2). The cali-
brated MOVES output is hereafter referred to as the 2035 BAU scenario, 
which serves as the reference for comparisons with CFP and CFP MAX 
scenarios. 

The emission impacts of CFP and CFP MAX were developed using 
modified VISION scenario tools (ICF, 2021) in which vehicle population, 
VMT, and fuel consumption are connected by the annual VMT accrual 
rates and fuel economy. Policy changes were reflected in the market 
share of alternative fuel vehicles including zero-emission vehicles 
(ZEVs). On-road mobile emissions from the 2035 BAU scenario were 
adjusted to represent the CFP and CFP MAX scenarios based on the 
difference in the market share of new sales of alternative fuel vehicles 
relative to the BAU scenario (see Tables S3–S7). A summary of statewide 
on-road emissions under each scenario is shown in Table S8. 

The CFP scenario represents the expected changes in Oregon’s 
vehicle fleet due to the adoption of California’s Advanced Clean Trucks 
regulation, as well as the forthcoming Advanced Clean Cars 2 regulation, 
which will require rapid increases in ZEVs (primarily battery-electric 
vehicles) sales shares, resulting in the replacement of a significant 
fraction of Oregon’s on-road transportation fleet with ZEVs by 2035 
(ICF, 2021). These changes are sufficient to meet the 25% CI reduction 
target specified in the executive order. 

The CFP MAX scenario evaluates additional policy-driven changes to 
Oregon’s transportation system, in addition to those modeled in CFP. 
The primary difference between the two is the displacement of an 
additional quarter of the diesel demand by renewable diesel; CFP MAX 
also projects more compressed natural gas (CNG), electric, and hydrogen 
heavy-duty vehicles (class 7 & 8 trucks) than CFP. The composition of 
renewable diesel differs from its petroleum equivalent, most notably due 
to very low sulfur and reduced aromatic content. These changes in diesel 
fuel composition can reduce particulate matter (PM) emissions (see for 

example Christopher Stoos, 2021; C.J.S. Bartlett et al., 1992; Qian et al., 
2017) in vehicles that lack a diesel particulate filter (DPF). Most heavy 
duty diesel vehicles in the future Oregon fleet will be equipped with 
DPFs, minimizing the difference in expected PM emission rates between 
vehicles fueled by renewable diesel and those fueled by conventional 
diesel. The CFP MAX scenario slightly reduces emissions for most of the 
criteria pollutants relative to the CFP scenario, but the CFP MAX may 
emit slightly more CO and total hydrocarbons (THC) due to the addition 
of more heavy duty CNG trucks in this scenario. Total NOx emissions are 
not predicted to increase in the CFP MAX scenario under the assumption 
that the new CNG engines will use low-NOx technologies (Mahla et al., 
2018; Zhu et al., 2020). In the 2035 timeframe, the overall emission 
impact of CNG and fuel cells is expected to be quite small because those 
heavy-duty vehicles only account for a small portion of the heavy-duty 
fleet compared to the larger number of light duty vehicles. In the 
longer term beyond the year 2035, fuel cells may play an important role 
in mitigating the emissions of criteria pollutants (and greenhouse gases) 
due to their cumulative vehicle stock growth in Oregon (ICF, 2021). 

2.2. Current and future year emissions inventories 

Current year (2017) basecase emissions inventories with 4 km spatial 
resolution were created from the EPA 2017 National Emissions In-
ventory (NEI) using the Sparse Matrix Operator Kernel Emissions 
(SMOKE-4.7) modeling system (US EPA, 2020). Emissions from all 
sectors were incorporated into the simulations, including mobile sour-
ces, commercial & residential sources, industrial sources, aircraft, and 
area sources, such as food cooking, etc. Wildfire emissions for historical 
years were estimated from the Global Fire Emissions Database (GFED) 
(Giglio et al., 2013; Werf et al., 2017). Biogenic emissions were gener-
ated using the Model of Emissions of Gases and Aerosols from Natural 
(MEGAN) (Guenther et al., 2012). The 2017 basecase emissions in-
ventory was used to simulate a full year of pollutant concentrations for 
comparison to measured values as a quality control check before future 
simulations were performed. 

Mobile emissions with 4 km spatial resolution were scaled for each 
county in Oregon at the Source Classification Code (SCC) level from the 
base year 2017 to the future year 2035, based on MOVES results using 
Eq. (1): 

(NEI Mobile Emissions)2035
SCC = (NEI Mobile Emissions)2017

SCC ×
(MOVES )

2035
SCC

(MOVES )
2017
SCC

(1) 

Future year 2035 emissions from sectors other than mobile sources 
were maintained at their year 2017 basecase levels. This approach 
directly analyzes the effects of the transportation-oriented policies 
assuming that the chemical regime will remain unchanged between the 
years 2017 and 2035. 

Table 1 summarizes the Oregon statewide emissions of oxides of 
nitrogen (NOx), airborne particulate matter (PM), oxides of sulfur (SOx), 
and ammonia (NH3) under the 2017 basecase, 2035BAU, 2035 CFP, and 
2035 CFP MAX scenarios. Note that totals in Table 1 reflect emissions 
from mobile, point, and area sources so that the changes from the 
different mobile source scenarios can be understood in the context of the 
full emissions inventory. On-road gasoline tailpipe emissions account for 
9% of NOx emissions, and 3% of PM2.5 emissions across the state. On- 
road diesel tailpipe emissions account for 6% of NOx emissions and 

Table 1 
Air Pollution emissions summaries for Oregon under the 2017 basecase, 2035BAU, 2035CFP, and 2035CFP MAX scenarios.   

NOx (kmol/day) PM (kg/day) PM2.5 (kg/day) SOX (kmol/day) NH3 (kmol/day) 

2017 basecase 55,141 462,542 247,468 5,793 5,948 
2035 BAU 53,499 459,907 244,982 5,792 5,924 
2035 CFP 52,594 458,182 243,279 5,790 5,890 
2035 CFP MAX 52,570 458,167 243,266 5,790 5,889  

Y. Li et al.                                                                                                                                                                                                                                        
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2% of PM2.5 emissions across the state. Emissions from on-road gasoline 
plus on-road diesel tailpipes could be as high as 20% of the NOx and 
PM2.5 emissions totals in urban areas. Controls on non-transportation 
sources in Oregon were not explored in the current study, but results 
for California are discussed by Li et al. (2022a). 

PM and NOx emissions strongly affect ambient PM2.5 concentrations. 
Comparing the 2035 BAU and 2035 CFP scenarios, emissions from on- 
road gasoline vehicles are reduced by 25% for PM and 22% for NOx; 
emissions from on-road diesel vehicles are reduced by 2% for PM and 
6% for NOx. Reductions from the 2035 CFP scenario to the 2035 CFP 
MAX scenario are modest, with only a 2% PM decrease and 2.13% NOx 
decrease for on-road diesel vehicles. The CFP MAX scenario replaces 
approximately one-quarter of conventional diesel fuel in the CFP sce-
nario with renewable diesel and other reduced CI fuels in heavy-duty 
vehicles. All heavy-duty engines are assumed to have modern (post- 
2010 model year) emissions control systems that emit criteria pollutants 
at similar levels for conventional diesel and biodiesel fuel (Durbin et al., 
2021). 

2.3. Air quality simulation 

2.3.1. Meteorology model 
Hourly meteorology inputs to drive the regional chemical transport 

model at 4-km resolution during the years 2016 and 2030–2039 were 
simulated using the Weather Research and Forecasting (WRF) v4.3 
model (www.wrf-model.org). The WRF model was configured with 31 
vertical layers from the ground level to the top of the domain defined by 
an atmospheric pressure of 100 hPa. Initial and boundary conditions for 
meteorological simulations for the year 2016 were obtained from the 
North American Regional Reanalysis (NARR) database created by the 
National Center for Environmental Prediction (NCEP). Initial and 
boundary conditions for the year 2035 were obtained from the Com-
munity Climate System Model (CCSM) using the Representative Con-
centration Pathway (RCP) 4.5 Scenario (Gent et al., 2011). 

2.3.2. Chemical transport model 
The UCD/CIT airshed model is a reactive 3-D chemical transport 

model (CTM) that predicts the evolution of gas and particle phase pol-
lutants in the atmosphere in the presence of emissions, transport, 
deposition, chemical reaction, and phase change (Kleeman et al., 1997; 
Ying et al., 2007). The basic capabilities of the UCD/CIT model are 
similar to the CMAQ model maintained by the US EPA, but the UCD/CIT 
model has additional source apportionments features and higher parti-
cle size resolution (Hu et al., 2014, 2015, 2017; Li et al., 2022a; Yu et al., 
2019). 

Source apportionment calculations for primary PM within the UCD/ 
CIT model are accomplished using “tagging”. Emissions in the current 
study were tagged in nine separate sectors: 1) type 1 – onroad gasoline 
mobile; 2) type 2 – offroad gasoline equipment; 3) type 3 – onroad diesel 
mobile; 4) type 4 - offroad diesel equipment; 5) type 5 - wood burning; 6) 
type 6 – food cooking; 7) type 7 – aircraft; 8) type 8 – natural gas and 
biogenic; 9) type 9 – tire & brake wear and miscellaneous emissions not 
included in the categories listed above. An artificial tracer is emitted 
proportionally to emissions from each source category. Artificial tracers 
do not influence the particle radius and the dry deposition rates. Tracers 
are carried through all emissions, transport, deposition, coagulation, 
and growth calculations within the CTM framework so that they are 
directly proportional to the mass of primary particulate matter from 
each tracked source sector. 

The low-carbon transportation fuel scenarios investigated in the 
current study will change the emissions of primary PM grouped within 
emissions sectors 1 (on-road gasoline) and 3 (on-road diesel) in the 
current UCD/CIT configuration. EVs use of regenerative braking typi-
cally reduces brake dust wear compared to conventional vehicles, 
however the magnitude of these effects are generally smaller than that of 
tailpipe ones, and were not modeled in this study. Mobile mitigation 

strategies will also change the emissions of NOx and VOC that will affect 
the formation of secondary particulate matter components such as ni-
trate. These secondary effects are not “tagged”, but they can be calcu-
lated as the difference between PM concentrations under different 
emissions scenarios. 

2.3.3. Long-term simulation strategy 
The El Nino Southern Oscillation (ENSO) strongly affects meteo-

rology and air quality in the Western US. ENSO cycles typically last 
seven years, making it necessary to simulate multi-year time periods (up 
to a decade long) in order to predict representative annual-average 
concentrations in future time periods. A more efficient strategy for 
long-term simulations samples a subset of simulation periods across a 
suitably long time window. The “sample” of predicted concentrations 
generated by this subset of simulation periods represents an unbiased 
estimate for the long-term concentrations, with the uncertainty of the 
estimate reduced as the number of sample points increases. For the 
present study, the long-term PM2.5 and O3 concentrations were calcu-
lated using eight randomly-selected episodes in each of the four seasons 
across the 10 year time window between 2030 and 2039. Each simu-
lation episode had a duration of 7-days. Sensitivity analysis indicates 
that the average air pollution concentrations predicted over this thirty- 
two week sample captures the long-term average concentrations in 
California with a standard error of 0.23 μg/m3 in the presence of the El 
Nino Southern Oscillation (ENSO) (Li et al., 2022a). The 32-week 
average concentrations constructed using this method are used as the 
long-term average concentration in Oregon for the time period centered 
on the year 2035. 

2.4. BenMAP health impact analysis 

The public health impacts of air pollution within each energy sce-
nario were calculated using the BenMap-CE v1.4.8 model developed by 
US EPA (Sacks et al., 2018). The population dataset was prepared using 
PopGrid v4.3 (Census, 2010) according to the instructions provided in 
the BenMAP manual for the year 2010. Spatial patterns of income dis-
tribution and race/ethnicity in historical years were assumed to be 
strong predictors for those same features in future years. 

BenMAP calculates differential health impacts between an exposure 
scenario and a reference case. The reference base in this study is the 
atmosphere without any anthropogenic pollutants (primary or second-
ary PM2.5 from anthropogenic sources). The background concentration 
of total PM2.5 mass is estimated to be 3 μg/m3 in the western US, which 
is the concentration of marine aerosol measured near the Pacific Ocean. 
There is no natural background concentration for motor vehicle tailpipe 
emissions, and so the background concentration is set to 0 μg/m3 during 
calculations for the health effects associated with these particles. Two 
sets of health impact comparisons were made in the current study. The 
2035 BAU analysis uses the UCD/CIT year 2035 BAU simulation results 
as the high exposure scenario and a uniform PM2.5 mass concentration 
of 3 μg/m3 for the reference case. The effects of PM2.5 emitted directly 
from the tailpipes of motor vehicles in the 2035 BAU are evaluated using 
the nominal PM2.5 tracer mass as the high exposure scenario and 0 μg/ 
m3 for the reference case. The 2035 clean fuel analysis in future years 
uses the BAU scenario as the high exposure scenario and CFP or CFP 
MAX as the reference case. Health damages were estimated using results 
from (Krewski et al., 2009). Economic benefits were then calculated 
using the value of a statistical life (VSL) of $7.6M (World Bank, 2016). 
Results are shown in Section 3.2.3. 

2.5. Environmental justice analysis 

Environmental justice analysis was conducted in two domains, 
shown in Fig. S1: Portland, the largest city in Oregon, and Salem, the 
capital city of Oregon. Socio-economic data from the American Com-
munity Survey (ACS) 2015–2016 (United States Census Bureau, 2020) 
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was used to calculate air pollution exposure for different household 
income and household race/ethnicity groups in Oregon. 

Four categories of household race/ethnicity were analyzed: non- 
Hispanic White, Black and African American, Asian, and Hispanic or 
Latino, regardless of race. Non-Hispanic White residents account for 
~80% of the population in both study cities (race/ethnicity summary 
shown in Table 2). The household race/ethnicity population densities 
are shown in Figs. S2–S5. Non-Hispanic White residents are distributed 
approximately uniformly across the cities of Portland and Salem 
(Fig. S5), but minorities primarily live in a subset of each city. Hispanic 
or Latino residents account for 12% of the population in Salem and 8% 
of the population in Portland. Asian and Black and African American 
residents account for less than 7% of total population in both Portland 
and Salem. Black and African American residents tend to live northeast 
of Portland (Fig. S3), while Asian (Fig. S2) and Hispanic or Latino 
(Fig. S4) residents live in Hillsboro (west of Portland) and east of Port-
land. Black and Hispanic or Latino residents live northwest of Salem 
close to the I-5 corridor (Figs. S3–4), but it is noteworthy that the total 

population of black residents is much smaller than Hispanic residents 
(Fig. S3). Asian residents tend to live outside of urban core of both 
Portland and Salem (Fig. S2). 

The ACS dataset includes 16 household income categories (shown in 
Table S9) at the census block level that were aggregated into 4 income 
categories in the present analysis in order to obtain sufficient statistical 
power within each category. Each of the combined income categories 
was created by combining the results from four of the original 16 income 
categories. Table 3 displays the definitions for each aggregated income 
category and the number of residents falling into each income category. 
The population densities for each aggregated income category are 
shown in Figs. S6–S9. For Portland, household incomes increase from 
the southwest portion of the city towards the northeast portion of the 
city. It is noteworthy that many Portland residents in the highest income 
category live in the downtown city core (home sales prices are also 
highest) where pollutant concentrations are generally higher (Fig. S9). 
There are no significant spatial patterns for the first three household 
income groups in Salem, but residents in the highest household income 
group tend to live outside of the urban core and away from major 
highways. 

Oregon’s population is projected to grow by approximately 20% 
(~4M–~5M) between 2017 and 2035. Scenarios describing regions that 
will grow most quickly and the economic/ethnic makeup of those new 
residents is beyond the scope of the current analysis. The relative de-
mographic distributions were therefore assumed to remain constant 
between 2017 and 2035. Household Population weighted concentra-
tions (HPWCs) were calculated for PM2.5, PM0.1 and other species/ 
tracers for each income category and for each race/ethnicity group 
under the three future transportation energy scenarios in Oregon. Ab-
solute/relative exposure and absolute disparity were analyzed to 
determine the ability of each scenario to reduce air pollutant exposure 
for all residents and to mitigate the exposure disparity between income 
categories and races/ethnicity groups. 

3. Results 

3.1. Chemical transport model output and quality control 

Quality control simulations for the year 2016 were carried out across 
Oregon to build confidence in the inputs used to drive the source- 

Table 2 
Household race/ethnicity Category summary in target analysis domain.   

Salem Portland 

Race/Ethnicity Household Percentage Household Percentage 

Total 99,384  556,152  

Hispanic 12,249 12.32% 46,793 8.41% 
Black 813 0.82% 17,525 3.15% 
non-Hispanic White 81,497 82.00% 438,497 78.84% 
Asian 1,776 1.79% 34,115 6.13%  

Table 3 
Household income category summary in target analysis domain.   

Salem Portland 

Income Category Household Percentage Household Percentage 

Total 99,384  556,152  

< $24,999 20,818 20.95% 98,357 17.69% 
$25,000 ~ $44,999 21,501 21.63% 96,379 17.33% 
$45,000 ~ $99,999 38,099 38.24% 200,158 35.99% 
> $ 100,000 19,151 19.18% 161,258 29.00%  

Fig. 2. Predicted and measured PM2.5 mass concentrations in the year 2016. “Corrected” model results increased per-capita wood smoke emissions rates to be 
consistent with California emissions projections. 
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oriented UCD/CIT regional air quality model before it was applied to the 
year 2035 BAU, 2035 CFP, and 2035 CFP MAX simulations. Weak La 
Nina conditions prevailed in 2016, with slightly higher-than-average 
rainfall during winter months. Tests in 2016 should therefore be 
representative of typical ENSO conditions expected in future years. 
Meteorological data for 2016 had already been acquired as part of 
previous studies in California (Li et al., 2021; Li et al., 2022a). The EPA 
NEI inventories for 2017 were utilized for these simulations, as this was 
the closest available emissions inventories to the year 2016. 

Predicted ambient annual average concentrations of PM2.5 mass, 
element carbon (EC), organic carbon (OC), nitrate and PM0.1 mass for 
the year 2016 are shown in Figs. S10–S11. Predicted ambient concen-
trations for primary PM2.5 mass associated with tailpipe emissions from 
on-road gasoline vehicles and on-road diesel vehicles are shown in 
Fig. S12. The ambient concentrations associated with on-road vehicles 
are calculated using the tagging procedures discussed in Section 2.3.2. 
Concentrations of PM2.5 mass and PM2.5 components over land are 
highest in major cities such as Portland, Eugene and areas along the I-5 
corridor in the year 2016. The PM2.5 EC concentrations are primarily 
from on-road heavy duty diesel vehicles. The spatial pattern of EC is 
consistent with the spatial pattern of primary PM2.5 mass emitted from 
the tailpipes of gasoline and diesel vehicles (Fig. S12). PM2.5 OC con-
centrations are mainly from food cooking and residential wood com-
bustion, with a spatial pattern that follows population density rather 
than major transportation corridors (Fig. S13). 

Predicted PM2.5 mass concentrations were compared to measure-
ments in urban areas, including Portland (Fig. 2a and b), and Eugene 
(Fig. 2c and d). Fig. S14 shows the map of available measurement sites in 
Oregon. Table 4 shows model performance statistics for the year 2016 
across the measurement sites summarized in Fig. 2 for comparison to 
standard model performance criteria. PM2.5 mass predictions during 

summer months are in good agreement with measurements, but gener-
ally under-predicted during winter months. Portland and Eugene have 
population densities that are similar to Sacramento, CA, but the NEI per 
capita wood smoke emissions in the Oregon cities are a factor of 10–100 
lower than CARB per capita wood smoke emissions in Sacramento, 
suggesting that wood smoke emissions in Oregon may be under-
estimated. Increasing wood smoke emissions by a factor of ~10 in the 
Portland area and ~100 in the Eugene area to be consistent with 
emissions rates in Sacramento significantly improves model perfor-
mance but does not completely eliminate PM2.5 under predictions in the 
winter season (see red lines in Fig. 2). This issue should not influence the 
analysis of public health benefits associated with the adoption of low CI 
transportation fuels, however. Therefore, the NEI is used to represent 
non-transportation sources in the following 2035 analysis. Corrections 
to the wood smoke emissions will be fully investigated in the next 
iteration of modeling when all sectors adopt measures to reduce 
emissions. 

WRF four-dimensional Data Assimilation (FDDA) was not used in the 
2017 basecase QA/QC simulation because FDDA cannot be used in the 
future year scenarios (no measurements). Previous studies have found 
that WRF configured without FDDA may overestimate wind speed and 
Planetary Boundary Layer (PBL) height, with stronger effects in the 
winter period than the summer period ( Li et al., 2016; Tran et al., 2018). 
Increased ventilation can cause an under-prediction of pollutant con-
centrations. It is possible that wind-speed over-predictions could 
contribute to the under-prediction of concentrations in Oregon cities 
during the winter season. This issue could potentially influence the 
magnitude of the concentration changes within each emissions scenario, 
but not the directionality of those changes. 

Routine PM2.5 measurements in Oregon do not collect source 
apportionment information and so there is no way to directly evaluate 
the accuracy of the source apportionment results predicted by the UCD/ 
CIT model in the current study. The agreement between predicted and 
measured total PM2.5 mass concentrations builds confidence in the ac-
curacy of the model inputs, and previous studies have verified the ac-
curacy of the UCD/CIT source apportionment predictions in California 
(see for example Hu et al., 2015, 2017; Yu et al., 2019). 

The time series of primary PM2.5 mass concentrations associated with 
on-road gasoline vehicles (tracer 1) and on-road diesel vehicles (tracer 
3) during the year 2016 are shown in Fig. S15. Concentrations for the 
primary PM2.5 mass associated with these on-road sources generally 
increase during the colder winter months due to reduced atmospheric 
mixing and lower planetary boundary layer height. These seasonal 
patterns will persist in future years. 

Spatial patterns for all nine tracers for primary particulate matter 
associated with different source categories are presented in Fig. S13. On- 
road vehicle emissions account for ~20% of the primary airborne PM in 
urban areas such as Portland. These are the emissions that will change 

Table 4 
Normalized Mean Bias (NMB), Normalized Mean Error (NME), and correlation 
coefficient between model predictions and measurements in the year 2016. 
Simulations meet target model performance criteria at three out of four mea-
surement sites when corrections are applied to residential wood burning 
emissions.   

Original Residential wood burning 
corrected 

Goal* <0.3 < ±0.1 >0.79 <0.3 < ±0.1 >0.79 

Criteria* <0.5 < ±0.3 >0.40 <0.5 < ±0.3 >0.40 

Site NMB NME r NMB NME r 

Portland − 410510080 0.44 − 0.25 0.44 0.4 − 0.07 0.67 
Portland - 410670005 0.473 − 0.4 0.33 0.37 − 0.28 0.56 
Eugene - 410390059 0.53 − 0.5 0.15 0.47 − 0.43 0.41 
Eugene - 410391009 0.413 − 0.35 0.45 0.37 − 0.26 0.53  

Fig. 3. (a) PM2.5 mass concentration for BAU scenario (μg m− 3), (b) the difference between BAU and CFP scenarios (μg m− 3), and (c) the difference between CFP and 
CFP MAX scenarios(ng m− 3). 
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due to the adoption of low-carbon transportation fuels. The remaining 
primary particles are mainly associated with natural gas combustion, 
residential fuel combustion, and offroad diesel equipment. The rela-
tively modest contribution from on-road vehicles in the 2016 simulation 
helps to frame expectations for the effects of low-carbon fuel adoption in 
future scenarios. 

3.2. Future air quality simulations 

3.2.1. PM concentrations comparisons between BAU, CFP and CFP MAX 
scenarios 

The change in total PM2.5 mass, EC, OC and PM0.1 mass (summed 
across all sources) was first analyzed since these pollutants determine 
how the adoption of low CI transportation fuel will affect total public 
health. Figs. 3–6 show long-term PM2.5 total mass, EC, OC and PM0.1 
total mass concentrations in the 2035 BAU scenario (panel a) along with 
changes caused by the adoption of low-carbon transportation fuels in the 

Fig. 4. (a) PM2.5 EC concentration for BAU scenario (μg m− 3), (b) the difference between BAU and CFP scenarios (ng m− 3), and (c) the difference between CFP and 
CFP MAX scenarios(ng m− 3). 

Fig. 5. (a) PM2.5 OC concentration for BAU scenario (μg m− 3), (b) the difference between BAU and CFP scenarios (ng m− 3), and (c) the difference between CFP and 
CFP MAX scenarios(ng m− 3). 

Fig. 6. (a) PM0.1 mass concentration for BAU scenario (μg m− 3), (b) the difference between BAU and CFP scenarios (μg m− 3), and (c) the difference between CFP and 
CFP MAX scenarios(μg m− 3). 
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CFP and CFP MAX scenarios (panel b and c). PM total mass, EC and OC 
reductions occur mainly along the I-5 corridor connecting Portland, 
Eugene and Salem. PM2.5 EC concentrations are predicted to decrease 
~10–20%, PM2.5 OC concentrations are predicted to decrease ~6–10% 
and PM0.1 mass concentrations are predicted to decrease ~5–15% 
depending on location. PM2.5 EC is strongly associated with on-road 
diesel engine emissions, but other sources make relatively larger con-
tributions to PM2.5 OC and PM0.1 mass concentrations. 

3.2.2. Mobile source PM comparisons between BAU, CFP and CFP MAX 
scenarios 

Changes to predicted ambient concentrations of primary PM2.5 mass 
associated with tailpipe emissions from on-road gasoline vehicles and 
on-road diesel vehicles were analyzed to further quantify the pollutants 
changes associated with mobile sources. Fig. 7 shows predicted changes 
to the primary ambient PM2.5 mass associated with tailpipe emissions 
from on-road gasoline vehicles (tracer 1) between the BAU and CFP/CFP 
MAX scenarios. The greatest reductions of ~25% are predicted to occur 
in Salem and Eugene, while predicted concentrations in Portland 
decrease by a more modest ~10% (Fig. 7b). The concentration differ-
ence between the CFP and CFP MAX scenarios (Fig. 7c) is smaller than 
the concentration difference between the BAU and CFP scenarios 
(Fig. 7b). 

Fig. 8 shows predicted changes to the concentration of primary PM2.5 
mass associated with tailpipe emissions from on-road diesel vehicles 
(tracer 3) between the BAU and CFP/CFP MAX scenarios. Diesel mobile 
emissions reductions of ~15% are apparent in major cities including 
Salem, Eugene, and Portland. 

Reductions in primary PM2.5 mass concentrations associated with 

diesel vehicles (1.8%, compare Fig. 8c–b) are larger than corresponding 
reductions for gasoline vehicles (0.5%, compare Fig. 7c–b) under the 
CFP MAX scenario vs. the CFP scenario. This result reflects the utiliza-
tion of different fuels in the two scenarios. The CFP scenario has sig-
nificant ZEV market penetration, driven by the adoption of California’s 
Advanced Clean Cars, Advanced Clean Trucks and Advanced Clean 
Fleets rules. This causes a significant transition from gasoline internal 
combustion engine (ICE) vehicles in the light-duty sector towards elec-
tric vehicles (EVs), and a smaller but still significant transition towards 
EVs in the medium and heavy-duty sector. These transitions reduce CI 
and successfully attain the 25% target specified in Executive Order 20- 
04 without requiring any significant growth in the consumption of 
biodiesel and renewable diesel beyond historical trends. 

The CFP MAX scenario further reduces CI by expanding the con-
sumption of renewable diesel in medium and heavy-duty vehicles. An 
additional 25% of the fossil diesel demand is replaced by renewable 
diesel and CNG in the CFP MAX scenario. Renewable diesel reduces life 
cycle GHG emissions when displacing petroleum, however, renewable 
diesel offers minimal air quality benefit when used in modern diesel 
engines equipped with diesel particulate filters (DPFs) and selective 
catalytic reduction (SCR) systems. Both of these systems are required in 
Oregon for post-2010 model year diesel vehicles. Therefore, the 
pollutant concentration fields predicted under the CFP and CFP MAX 
scenarios are similar, even though the life-cycle GHG emissions are 
significantly lower in the CFP MAX scenario. 

It should be noted that tire and brake wear emissions were held 
constant in the CFP scenario and the CFP MAX scenario, but these 
emissions could be targeted for reductions in the future mitigation 
policies. 

Fig. 7. (a) PM2.5 on-road gasoline source concentration for BAU scenario (μg m− 3), (b) the difference between BAU and CFP scenarios (ng m− 3), and (c) the 
difference between CFP and CFP MAX scenarios(ng m− 3). 

Fig. 8. (a) PM2.5 on-road diesel source concentration for BAU scenario (μg m− 3), (b) the difference between BAU and CFP scenarios (ng m− 3), and (c) the difference 
between CFP and CFP MAX scenarios(ng m− 3). 
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3.2.3. Health impact comparison between BAU and CFP, CFP MAX 
scenarios 

The results presented in the previous sections summarize total PM 
concentrations under different emissions scenarios, including separate 
tracking of primary PM (emitted directly from the vehicle) and sec-
ondary PM (formed by reactions of gas-phase pollutants in the atmo-
sphere). Table 5 shows the BenMAP health impact analysis based on the 
changes to total PM2.5 mass, including primary and secondary PM2.5 and 
primary PM2.5 mass by itself associated with on-road vehicles summa-
rized in Figs. 3, Figs. 7 and 8. BenMAP (configured with the (Krewski 
et al., 2009) health damage function) predicts 242 excess deaths per year 

for every 1,000,000 people in the 2035 BAU scenario because of expo-
sure to concentrations of PM2.5 total mass from all sources, including 
transportation and non-transportation sources, relative to the assumed 
background concentrations. 

Primary PM2.5 emitted from the tailpipes of on-road gasoline vehi-
cles accounts for an estimated eight excess deaths per 1,000,000 people, 
and primary PM emitted from the tailpipes of on-road diesel vehicles 
accounts for an estimated eight excess deaths per 1,000,000 people in 
the 2035 BAU scenario. The air pollution mortality estimates decrease in 
proportion to the concentration reductions in the low-carbon trans-
portation fuel scenarios. Adoption of low carbon fuels (CFP and CFP 

Table 5 
BenMAP Health Impact Analysis between BAU and CFP/CFP MAX scenarios.  

Year Scenario Mortality Mortality per 1,000,000 Economic Value 

PM2.5 MASS1 

2035 BAU 608.04 242.46 (cost) $ 4,234,770,176 
2035 CFP saving 12.12 4.83 $ 84,411,920 
2035 CFP MAX saving 12.56 5.01 $ 87,779,543 

Tracer 1 – On-road Gasoline2 

2035 BAU 21.16 8.44 (cost) $ 147,378,448 
2035 CFP saving 3.42 1.36 $ 23,807,160 
2035 CFP MAX saving 3.50 1.39 $ 24,346,360 

Tracer 3 – On-road Diesel3 

2035 BAU 19.79 7.89 (cost) $ 137,825,424 
2035 CFP saving 2.49 0.99 $ 17,331,380 
2035 CFP MAX saving 2.81 1.12 $ 19,573,342 

1Primary and secondary PM; 2,3primary tailpipe PM only. 

Fig. 9. Relative disparity from population average exposure concentrations for 6 PM components in year 2035 based on household race/ethnicity. Shaded gray 
(BAU)/dotted (CFP)/striated (CFP MAX) bars represent relative household weighted concentrations compared to total population average exposure. The average 
exposure concentration in the BAU scenario is listed at the top of each sub-panel. 
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MAX) reduces mortality associated with primary PM emitted from gas-
oline vehicles by ~ 16% and mortality associated with primary PM 
emitted from diesel vehicles by ~ 12.5%. 

Attribution of mortality from secondary PM can be estimated by 
comparing total mortality under the 2035 CFP and 2035 CFP MAX 
scenarios to mortality in the 2035 BAU scenario, and then excluding the 
impacts of primary PM. In both scenarios, secondary PM accounts for 
approximately 50% of the total health savings associated with the 
adoption of low-carbon transportation fuels. 

3.3. Environmental justice (EJ) analysis between BAU and CFP, CFP 
MAX scenarios 

3.3.1. Exposure disparity by household race/ethnicity 
Disparities in exposure concentrations were analyzed for four 

different household race/ethnicity groups: i) non-Hispanic White; ii) 
Asian alone; iii) Black and African American; iv) Hispanic or Latino, 
regardless of race, for 6 PM components, including PM2.5 mass, EC, OC, 
primary particles from on-road gasoline tailpipes, primary particles 
from on-road diesel tailpipes, and PM0.1 mass. Fig. 9 shows relative 
exposure disparities as well as average exposure in the BAU scenario for 
these pollutants. Fig. 10 shows absolute disparities in the BAU scenario 
and changes to disparity under the 2035 CFP and CFP MAX scenarios for 
the six pollutants. The absolute exposure disparity concentrations in the 
BAU scenario are listed along the bottom of the figure, while the 
disparity reduction in the CFP and CFP MAX scenarios relative to BAU 
scenario are shown in the bar chart. Household Population Weighted 
Concentrations (HPWCs) used for Figs. 9 and 10 can be found in 
Figs. S16–17. As expected, pollutant exposures are generally higher in 
the BAU scenario than the two low-carbon transportation fuel scenarios, 
especially for pollutants associated with mobile sources (PM2.5 EC, on- 
road gasoline and on-road diesel tracers). Exposures in the CFP and 
CFP MAX scenarios are similar, which is consistent with the minor 
changes in the emissions associated with these scenarios. Exposures to 
PM2.5 total mass, OC, and PM0.1 total mass are similar in the 2035 BAU, 

2035 CFP, and 2035 CFP MAX scenarios because these components are 
mainly associated with non-transportation sources that were not 
controlled in the current study. 

Exposures to pollutants emitted directly from mobile sources (PM2.5 
EC, on-road gasoline and on-road diesel tracers) have larger relative 
disparities than exposures to PM2.5 total mass, OC, and PM0.1 total mass 
(Fig. 9). Around 80% of the population in the cities of Portland and 
Salem is non-Hispanic White, and so it is expected that exposure con-
centrations for this group will be close to the average exposure for the 
total population in the study region. This finding is illustrated most 
clearly in Fig. 9, where the relative exposure disparities for the non- 
Hispanic White residents are close to zero. Relative exposure dispar-
ities for other race/ethnicity groups diverge from the total population 
average exposures with the details depending on location. This pattern 
differs from trends in several California cities (Li et al., 2022a) and at 
other locations across the US (Banzhaf et al., 2019; Colmer et al., 2020; 
Di et al., 2017; Mikati et al., 2018; Rosofsky et al., 2018; Tessum et al., 
2021) where White residents are generally exposed to lower concen-
trations and minorities are exposed to higher concentrations. 

In Portland (Fig. 9(a-f)), Hispanic or Latino residents are exposed to 
the lowest concentrations for all 6 PM pollutants. Black and African 
American residents are exposed to significantly higher-than-average PM 
concentrations except for PM0.1 mass. This result reflects the population 
distribution around Portland. The majority of the Black & African 
American residents live Northeast of Portland (Fig. S3), which is close to 
the urban core. However, Hispanic residents in Portland live outside of 
the urban core, where concentrations are significantly lower (see 
Fig. S4). In Salem (Fig. 9(g-m)), Hispanic and Black residents experience 
the highest PM exposure concentrations. Overall, the exposure dispar-
ities in Oregon reflect the somewhat uniform distribution of non- 
Hispanic White residents across the study region, including in urban 
core areas, while other race/ethnicity groups live further from the urban 
core (lower concentrations) or closer to major transportation corridors 
(higher concentrations). 

Exposure disparities between different race/ethnicity groups 

Fig. 10. Absolute disparity in household ethnicity/race exposure concentrations for 6 PM components in the year 2035. The boxed row represents changes to 
absolute disparity value relative to BAU, and corresponding highest exposure group and lowest exposure group. Dotted (CFP)/striated (CFP MAX) bar represent 
percentage changes compared to BAU. 
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decrease under the future scenarios that adopt low-carbon trans-
portation fuels for most pollutants (Fig. 10). Exposure disparities for 
pollutants directly associated with transportation sources (EC, primary 
particles emitted from gasoline and diesel tailpipes) decrease by 10–15% 
in Portland and 15–20% in Salem under the low carbon scenarios. 
Exposure disparities for PM2.5 OC decrease by 8–10% in Portland and 
Salem. Exposure disparity to PM2.5 total mass also decreases by 10% in 
Salem, but remains approximately constant in Portland when low car-
bon transportation fuels are adopted. The PM2.5 mass absolute disparity 
in Portland is 0.5567 μg/m3. Exposure disparities in Portland for on- 
road tracers are 0.0169 μg/m3 for gasoline and 0.019 μg/m3 for diesel 
(<3% of the total PM2.5 mass disparity). Reductions of transportation- 
related exposure disparities therefore won’t significantly affect total 
PM2.5 mass exposure disparity in Portland. Adoption of low-carbon fuels 
in the CFP scenario decreases PM0.1 exposure disparity by ~4% in 
Portland and Salem. Some of these reductions in PM0.1 exposure 
disparity are lost in the transition from the CFP scenario to the CFP MAX 
scenario. The CFP MAX scenario includes more heavy duty CNG vehicles 
and renewable diesel vehicles than the CFP scenario. Natural gas com-
bustion generates a greater fraction of ultrafine particles with diameters 
<0.1 μm (PM0.1) (Yu et al., 2019) even though the related PM2.5 emis-
sions decrease. As discussed in Section 2.5, many Hispanic residents in 
Salem live close to the I-5 corridor, which increases their exposure to 
emissions from on-road heavy-duty vehicles. 

3.3.2. Exposure disparity by household income 
Fig. 11 shows the calculated relative exposure disparity among the 

four household income categories for PM2.5 mass, EC, OC, primary PM 
from the tailpipes of on-road gasoline vehicles, primary PM from the 

tailpipes of on-road diesel vehicles, and PM0.1 mass. Household Popu-
lation Weighted Concentrations (HPWCs) used in Fig. 11 are displayed 
in Figs. S18–19. In general, relative exposure disparity by income is 
smaller than disparities associated with race/ethnicity. Exposure dis-
parities for transportation related pollutants (PM2.5 EC, primary PM 
from the tailpipes of on-road gasoline vehicles, primary PM from the 
tailpipes of on-road diesel vehicles) are larger than exposure disparities 
for PM2.5 mass and PM2.5 OC. Lower income households in Portland and 
Salem are exposed to higher air pollution concentrations in all scenarios, 
while higher income households are exposed to lower concentrations. 
The relative trend of increasing exposure concentrations at lower in-
come levels in Portland and Salem is consistent with the national trend 
(Banzhaf et al., 2019; Bell and Ebisu, 2012; Colmer et al., 2020; Di et al., 
2017; Mikati et al., 2018). Trends in Portland are slightly complicated by 
the fact that many high-income households live in the city core, leading 
to increasing exposure concentrations. The lowest exposure group in 
Portland is the second-highest income category ($45,000 ~ $99,999), 
instead of the highest income category (>$100,000). The highest in-
come group in Salem lives outside of the urban core and away from 
Highway I-5, leading to significantly lower exposure concentrations. 
The first three income categories in Salem do not have significant spatial 
patterns, which results in close-to-average exposure concentrations. 

Fig. 12 displays disparities between the highest exposure group and 
the lowest exposure group for the 6 PM pollutants displayed in Fig. 11. 
The absolute exposure disparity concentrations in the BAU scenario are 
listed along the bottom of the figure, while the disparity reduction in the 
CFP and CFP MAX scenarios relative to BAU scenario are shown in the 
bar chart. PM2.5 mass, OC exposure disparities change by less than 8% in 
Portland and 10% in Salem due to adoption of low-carbon 

Fig. 11. Relative disparity from population-average exposure concentration for 6 PM components in year 2035 based on household income. . Shaded gray (BAU)/ 
dotted (CFP)/striated (CFP MAX) bars represent relative income weighted concentrations compared to total population average exposure. The average exposure 
concentration in the BAU scenario is listed at the top of each sub-panel. 
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transportation fuels because these components are mainly associated 
with non-transportation sources. Exposure disparities for PM2.5 EC, 
primary particles associated with tailpipe emissions from on-road gas-
oline vehicles, and primary particles associated with tailpipe emissions 
from on-road diesel vehicles decreased by ~10%, ~12% and ~14% in 
Portland and by ~18%, ~19% and ~18% in Salem, respectively. The 
absolute disparity in PM0.1 exposure decreased by ~12% in Portland and 
~6% in Salem. 

4. Discussion and conclusions 

Population exposure to PM2.5 total mass, EC, OC, on-road gasoline/ 
diesel and PM0.1 in Oregon decreased in future year 2035 scenarios that 
adopted GHG emissions mitigation strategies consistent with the pro-
posed expansion of Oregon’s Clean Fuels Program relative to a BAU 
scenario. Technologies such as electric vehicles and biofuels reduced 
emissions of criteria air pollutants such as PM, NOx, and SOx, as well as 
GHGs. PM reductions mainly occurred along the I-5 corridor, especially 
in the major cities Eugene and Salem. Adoption of low carbon fuels 
reduced PM2.5 EC concentrations by ~10–20%, PM2.5 OC concentra-
tions by ~6–10% and PM0.1 mass concentrations by ~5–15% depending 
on location. Concentrations of primary PM emitted directly from the 
tailpipes of on-road gasoline vehicles decreased by ~11% in Salem and 
Eugene and ~10% in Portland. Concentrations of primary PM emitted 
from the tailpipes of on-road diesel vehicles decreased by ~15% in the 
same cities. The majority of the PM reductions were achieved under a 
scenario that lowered GHG emissions by 25%. A more aggressive sce-
nario that lowered GHG emissions by 37% through the further adoption 
of biofuels in diesel engines resulted in only minor amounts of additional 
PM reduction because the modern diesel engines in the year 2035 fleet 
were already equipped with advanced emissions control technology. 
Concentrations of pollutants other than PM decreased under the 
modeled compliance scenarios as well, but these generally had minimal 
health impacts. 

Standard epidemiological associations predict 242 annual deaths per 

1,000,000 population in Oregon from exposure to total PM2.5 mass 
from all sources in the 2035 BAU scenario. Primary PM emitted from on- 
road gasoline vehicles and on-road diesel vehicles each account for 
approximately 8 excess deaths per 1,000,000 each year. Adoption of low 
carbon transportation fuels reduces excess mortality by approximately 5 
deaths per 1,000,000 people each year. Reductions in primary and 
secondary PM each account for approximately 50% of this avoided 
mortality. Adoption of low carbon fuels reduces mortality associated 
with primary PM emitted from gasoline vehicles by ~16% and mortality 
associated with primary PM emitted from diesel vehicles by ~12.5%. 

Exposure trends across different race/ethnicity groups reflect the 
size and geographical distribution of those groups. More than 80% of the 
population in Portland and Salem is Non-Hispanic White, and so these 
residents experience exposure concentrations very close to the popula-
tion average. Relative exposure disparities for other race/ethnicity 
groups diverge from the total population average exposures with the 
details depending on location. Black and African Americans are the 
highest exposure group in both Portland and Salem. Black residents in 
Portland live close to the urban core, while Black residents in Salem live 
close to transportation corridors. In Portland, Hispanic or Latino resi-
dents are exposed to the lowest exposure concentrations because they 
live outside of urban core and away from major transportation corridors. 
However, in Salem, Hispanic or Latino residents are exposed to higher- 
than-average concentrations because they live close to Interstate 5. It is 
important to note that these exposure calculations have a spatial reso-
lution of 4 km, which may not resolve pollutant gradients near freeways 
and major surface streets. Studies carried out in California show that 
exposure patterns identified with 4 km spatial resolution are consistent 
with exposure patterns quantified at 1 km and 0.25 km spatial resolution 
(Li et al., 2022a). 

Exposure disparities across different income groups are smaller than 
exposure disparities based on race/ethnicity. In general, lower income 
households in Portland and Salem are exposed to higher air pollution 
concentrations in all scenarios, while higher income households are 
exposed to lower concentrations. Trends in Portland are slightly 

Fig. 12. Absolute disparity in household income exposure concentrations for 6 PM components in the year 2035. The boxed row represents changes to absolute 
disparity value relative to BAU, and corresponding highest exposure group and lowest exposure group. Dotted (CFP)/striated (CFP MAX) bar represent percentage 
changes compared to BAU. 
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complicated by the fact that many high-income households live in the 
city core, leading to increasing exposure concentrations for this wealthy 
group. The lowest exposure group in Portland is the second-highest in-
come category ($45,000 ~ $99,999), instead of the highest income 
category (>$100,000). 

Adoption of low-carbon transportation fuels reduces exposure 
disparity based on race/ethnicity by 10–18% for PM2.5 elemental carbon 
(EC) and 14–20% for primary tailpipe PM. Reductions in exposure 
disparity based on race/ethnicity are less than 10% for PM2.5 mass, OC, 
and PM0.1 mass that have major sources other than transportation. This 
pattern is to be expected because the purpose of this study was to 
characterize the impacts of a transportation-focused policy, the CFP, 
while holding all other sources at existing levels. The majority of the 
disparity reduction was achieved by the 25% GHG reduction scenario, 
with only minor additional benefits associated with the 37% GHG 
reduction scenario. 

The current study suggests that the proposed expansion of Oregon’s 
Clean Fuels Program is likely to produce a significant air quality benefit 
that reduces excess mortality for all residents and simultaneously re-
duces PM2.5 exposure disparities between different socio-economic 
groups. This aligns with the prevalent consensus within the trans-
portation and air quality research literature that displacing petroleum- 
based transportation fuels for non-petroleum alternatives typically 
yields improved air quality. Adoption of clean fuels in the transportation 
sector, however, will not completely eliminate exposure disparities for 
all groups and all pollutants. 
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