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Diesel particulate matter (DPM) has been recognized as a carcinogen and identified as a toxic air contaminant
(TAC) in California and other jurisdictions. In response to this identification, the California Air Resources Board
(CARB) has adopted numerous regulations aimed at reducing DPM emissions from various sources. This study
utilized an integrated modeling approach to simulate ambient DPM concentrations for individual emission
sectors separately for the two years 2012 and 2017. The associated health impacts, including cancer risk and non-
cancer effects, were then assessed. This assessment provided a basis for apportioning emission sources, analyzing
reduction trends, and informing further regulatory efforts when combined with future emissions projections.

Our results showed a significant reduction in DPM-related cancer risk in California between 2012 and 2017.
Specifically, population weighted DPM cancer risk decreased by 42 %, and mortality attributable to DPM
exposure decreased by about 50 % statewide. Additionally, census tracts with higher population densities
consistently experienced more significant reductions in DPM cancer risk from 2012 to 2017.

Source apportionment analysis indicated that, as of 2017, on-road mobile sources were the largest contributor
to overall DPM risk, followed by off-road mobile, area, and stationary sources. Our findings further suggest that
while the overall health risk from DPM will continue to decline with emissions, the relative contributions of each
emission sector to DPM risk may shift over time depending on the major regulations in place, and how the
emission reductions impact nearby population. When accounting for how emissions have changed since 2017
and are projected to change in the future, new emission reduction efforts will likely need to prioritize off-road
mobile sources (e.g., seaports, airports, locomotives) and area sources (e.g., construction and agricultural sec-
tors) to achieve further risk reductions, especially beyond 2025.

1. Introduction

Diesel particulate matter (DPM) is widely recognized for its signifi-
cant health impacts due to containing over 40 known carcinogenic
substances (CARB, 2025). In 1998, the California Air Resources Board
(CARB) identified and classified DPM as a Toxic Air Contaminant (TAC)
(CARB, 1998), prompting a concerted effort to reduce its emissions.
CARB adopted the Diesel Risk Reduction Plan (DRRP) in 2000 (CARB,
2000), leading to the adoption of various regulations targeting emissions
from heavy-duty diesel engines, trucks, buses, and other sources.

The implementation of these regulations has yielded tangible results,
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with reported reductions in emission rates of elemental carbon (EC), a
major component of DPM, and other pollutants from trucks operating on
California roadways (Kozawa et al., 2014; Bishop et al., 2015; Dallmann
et al., 2012; Preble et al., 2015; Kuwayama et al., 2013). Additionally,
California enacted diesel fuel regulations aimed at reducing sulfur and
aromatic hydrocarbons in both vehicular and non-vehicular emissions to
address regional air quality issues related to ozone (O3) and particulate
matter (PM) pollution. Lower sulfur content in diesel fuel has been
linked to reduced DPM emissions (Weaver et al., 1986; Saiyasitpanich
et al., 2005; Ristovski et al., 2006; Zhang et al., 2009).

DPM has been considered as a major contributor to excess cancer risk
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in California due to its high carcinogenic potency and substantial
emission levels. Additionally, DPM poses other health concerns such as
negative effects on immunological or inflammatory systems (Sydbom
et al.,, 2001), the cardiovascular system (Campen et al., 2003), and
respiratory system (Ristovski et al., 2012). Progress in reducing health
risks associated with DPM is typically assessed based on the magnitude
of emission reductions (Lloyd and Cackette, 2001; Schwarzman et al.,
2021). However, it is important to recognize that the health risk linked
to DPM is more closely tied to ambient concentrations than simply to
emission rates. This is because exposure and subsequent risk are deter-
mined by the ambient concentration of DPM, which can be significantly
different from magnitude and spatial distribution of emissions because
of the transport and diffusion processes in the atmosphere. The focus of
the present study is to accurately estimate statewide ambient concen-
trations of DPM and inhalation health risks from DPM using an air
quality modeling approach. It is crucial to use ambient concentrations,
instead of emissions, to evaluate past, present, and future exposure
levels, as well as to track the efficacy of efforts to reduce DPM emissions.
Furthermore, DPM emissions originate from various sources, including
on-road mobile, off-road mobile, area, and stationary sources. In this
study, area sources represent all emission sources that are not classified
as on-road mobile, off-road mobile or major stationary sources. Exam-
ples include farm equipment and portable engines; they are treated as
area sources because they don’t have unique locations over time, mak-
ing it difficult to precisely specify where and when pollutants are
released. Each emission source may contribute differently to the overall
health impacts of DPM. Therefore, there is a pressing need to not only
assess the absolute contribution of each emission source but also to
understand their relative importance. Investigating the relative contri-
bution of different emission sources can provide valuable insights for
prioritizing and targeting mitigation efforts effectively.

The concentration of DPM in the atmosphere is influenced by the
magnitude of emissions as well as by factors such as the location of
emission sources relative to receptors, terrain features, and meteoro-
logical conditions. To more accurately assess the health impacts of DPM
on both regional and local scales in California, high-resolution datasets
of DPM concentrations that are both spatially and temporally resolved
are essential. However, it is not possible at present to directly measure
ambient DPM. Researchers have employed indirect methods to estimate
these concentrations. For example, one approach involves using EC and
nitrogen oxides (NOx) as surrogates for DPM and estimating DPM con-
centrations by scaling EC or NOx concentrations. However, these
methods have been implemented without rigorous justifications
(Verma, 2003; Propper et al., 2015; Hedmer et al., 2017). Even when the
means of directly measuring DPM in the atmosphere becomes available,
obtaining comprehensive measurements of DPM concentrations on
regional and fine spatial scales over an extended period, such as an
entire year, is extremely labor- and instrument-intensive, posing sig-
nificant challenges due to resource constraints and high costs. Therefore,
alternative approaches, such as air quality modeling, are necessary and
often used to estimate DPM concentrations and assess associated
long-term health impacts.

The U.S. EPA’s National Air Toxics Assessment (NATA) (U.S. Envi-
ronmental Protection Agency, 2016) uses a combination of the Com-
munity Multiscale Air Quality Modeling (CMAQ) system (U.S.
Environmental Protection Agency, 2025a) and the AERMOD dispersion
model (U.S. Environmental Protection Agency, 2025b) to estimate
ambient hazardous air pollutant (HAP) concentrations at the national
level, with CMAQ employing grid resolutions of 12 km x 12 km or
coarser. Regional assessments in California, such as the South Coast Air
Quality Management District’s (SCAQMD) MATES studies (SCAQMD,
2021) and the Bay Area Air Quality Management District (BAAQMD)
efforts (BAAQMD, 2014) utilize photochemical models, i.e., Compre-
hensive Air Quality Model with Extensions (CAMx) and CMAQ, at res-
olutions of 2 km x 2 km and 1 km x 1 km, respectively. While these
models effectively simulate reactive toxins, they have limitations in
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accurately characterizing local exposures such as at community levels
due to their coarse resolutions. Conversely, modeling at finer spatial
resolutions can provide more detailed and accurate assessments of
pollutant concentrations at the local level (Hamilton and Harley, 2021).

In this study, we employed an integrated modeling approach (Fig. 1)
to quantify DPM exposure and assess associated health risks across
California, from local communities to the statewide level. This approach
accommodated emission sources by sector and allowed us to analyze
trends in exposure and health impacts over time, providing a means to
evaluate the effectiveness of California’s DPM emissions regulations. By
quantifying the contributions of different emission source categories to
overall DPM impact, we can prioritize future emission reduction efforts.
The overarching aim of this study is to inform and support the devel-
opment of targeted regulations and policies that further reduce DPM
emissions in California.

The objectives of our study are threefold: 1) to quantify ambient
exposure to diesel particulate matter (DPM) and assess associated health
impacts in California; 2) to analyze the trend in exposure and health
impacts over time to evaluate the effectiveness of California’s DPM
emissions regulatory efforts; and 3) to quantify the relative contribu-
tions of each emission source category/sector to the overall DPM impact.
The analysis also aims to inform and support the development of further
regulations and policies targeting specific emission sources.

2. Materials and Methods
2.1. Modeling domains

Six separate modeling domains, covering the most populous regions
of California, were used to simulate statewide ambient DPM concen-
trations. This approach was chosen over a single statewide modeling
domain due to limitations in present-day computational resources, such
as processing time, storage capacity, and memory requirements. The
domains are listed from north to south as follows: Sacramento Valley
(SV), Bay Area (BA), San Joaquin Valley (SJV), South Coast (SC), San
Diego (SD), and Imperial County (IMP) (SI Appendix Fig. S1). The pop-
ulation within these modeling domains accounted for approximately 99
% of the state’s total population based on 2010 census data. Based on
our current understanding of toxic pollutant emissions, these domains
should cover all populated areas significantly impacted by toxic air
contaminants. SI Appendix Fig. S1 shows the six modeling domains along
with the major on-road sources (traffic links) in each domain. Additional
information is provided in SI Appendix Table S1 including population,
and the number of census tracts and census blocks. The modeling pe-
riods for this study were selected to cover the years 2012 and 2017,
which were the years with the most complete and recent regulatory
emission inventory and meteorology at the time of this study.

2.2. Air quality and meteorological models

Air Quality Model. The objective of the air quality modeling was to
assess the current state of DPM exposure across California and trends in
ambient DPM concentrations over time. Traditionally, for regional-scale
air quality modeling, grid-based regional-scale photochemical models,
such as CMAQ and CAMx are usually the preferred modeling platform
(e.g., Buonocore et al., 2014). Since the major portion of DPM mass like
EC, ash and metallic abrasion particles is inert and the chemical reaction
pathways among the reactive components are essentially not known, it
is reasonable to treat DPM as an inert pollutant. For inert pollutants, air
dispersion models have several advantages over grid-based photo-
chemical models. In dispersion modeling, the location and spatial extent
of emission sources can be more accurately represented. For example,
on-road mobile sources can be treated as “road-segment-like” line
sources instead of area sources with dimensions coincident with the
modeling grids. Another advantage is that in dispersion modeling, re-
ceptors (places where concentrations are computed) can be placed
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Fig. 1. Integrated modeling framework. Flowchart of the methodology to calculate DPM concentrations and to estimate health risks. Further analyses of source
apportionment and geographic disparity as well as policy implications are also major components of the present study.

anywhere in the modeling domain, such as centroids of census blocks
and census tracts, as well as places of interest and sensitive receptors (i.
e., monitoring sites, schools, hospitals, senior homes, daycare centers,
etc.). In grid-based models however, modeled concentrations represent
averaged values over grid cells. In short, dispersion models can char-
acterize source-receptor relationships more accurately.

In this study, CALPUFF was selected due to its thorough evaluation
(U.S. Environmental Protection Agency, 1998a; Rzeszutek, 2019) and its
suitability for regional-scale air quality assessments (U.S. Environmental
Protection Agency, 1998b). CALPUFF is a three-dimensional non--
steady-state puff dispersion model. It can incorporate time- and
space-varying meteorological conditions caused by weather systems as

well as the complexity of surface geophysical features like terrain vari-
ations and inhomogeneity of land cover. As such, CALPUFF can be uti-
lized in scales from local up to regional applications.

CALPUFF version 5.8.5 (U.S. Environmental Protection Agency,
2017a) was used in this study. Concentrations were estimated at the
centroids of census blocks, at sites where sensitive population groups are
located, such as senior homes, schools, hospitals, and daycare centers, as
well as regulatory air quality monitoring sites in the state.

Meteorology Model. In this study, meteorological fields generated
by the Weather Research and Forecast (WRF) (Skamarock et al., 2005)
version 3.9.1.1 (NCAR, 2017), a prognostic model, were processed with
the Mesoscale Model Interface Program (MMIF), version 3.4.1. (U.S.
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Environmental Protection Agency, 2017b). MMIF converts WRF output
fields to the parameters in the CALPUFF-ready format.

The WRF meteorological modeling domain consisted of four nested
Lambert projection grids of 36 km (D01), 12 km (D02), 4 km (D03), and
2 km (D04) uniform horizontal grid spacing (see SI Appendix Fig. S2).
WRF was run simultaneously for the four nested domains with two-way
feedback between the parent and nested grids, where the parent (outer)
domain provides lateral boundary conditions to the next interior
domain, while the interior domain provides higher resolution feedback
to its parent domain. The D01 and D02 grids were used to resolve the
larger scale synoptic weather systems, while the D03 and D04 grids
resolved the finer details of the atmospheric conditions and were used to
drive the air quality model simulations, depending on the need of air
quality modeling. In this work, meteorological fields on the 2 km grids
were used. Vertical variations of meteorological fields were resolved by
30 vertical hybrid sigma-pressure levels, which stretched from the sur-
face to 100 hPa and contained ten layers within the first kilometer above
the surface (SI Appendix Table S2). Initial and boundary conditions (IC/
BCs) were based on North American Regional Reanalysis (NARR) data at
32 km horizontal resolution. The IC/BCs were further amended with
surface and upper air observations obtained from the National Center for
Atmospheric Research (NCAR). The major physics options for each
domain are listed in SI Appendix Table S3.

2.3. DPM emissions inventory

In this study, DPM emission data were categorized into four major
groups: on-road mobile, off-road mobile, area sources and major point
sources. Each category was further processed into multiple emission
sectors (SI Appendix Table S4), around 30 sectors in total. For example,
off-road mobile sources were subcategorized into commercial harbor
craft (CHC), cargo handling equipment (CHE), locomotive (LOC),
transport refrigeration unit (TRU), airports, seaports including port
trucks (drayage), ocean-going vessels (OGV), etc. Doing so allowed us to
conduct dispersion modeling for emissions of each sector separately so
that their contributions to the overall exposure and excess cancer risk
could be quantified. The emission data for off-road mobile sources, area
sources and stationary sources were obtained from the California
Emissions Projection Analysis Model (CEPAM) (CARB, 2019) and the
emissions for on-road mobile sources were developed using the Cali-
fornia On-road Emission Factor Model system (EMFAC2017) (CARB,
2023). The spatial distributions of the four categories’ emissions
(on-road, off-road, area-wide, and major stationary) are mapped in SI
Appendix Figs. S3-S6. A summary table of annual total emissions by
sector is presented in Table 1. To consider potential impacts from the
emissions in Mexico that were transported into California, a DPM
emission inventory for regions in Mexico closest to the
California-Mexico border was also developed based on U.S. EPA’s
2017NEI (U.S. Environmental Protection Agency, 2017c). Detailed
emission source treatment and model parameters are presented in SI
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2.4. Model evaluations

CALPUFF. Prior to using the modeling results for assessing potential
excess cancer risks, it is essential to evaluate the simulated annual
average concentrations of DPM against measurement data. However,
DPM concentrations in ambient air cannot be measured directly.
Elemental carbon (EC) has widely been recognized as the most suitable
surrogate for DPM (Schauer, 2003), given its abundance in diesel
exhaust. Two sets of EC emissions were generated using the same
methodology and data sources as those for DPM: total EC and fossil-fuel
EC. The annual average concentrations of total EC and fossil-fuel EC
were simulated using CALPUFF with identical model configurations as
those for DPM across the model domains for each emission category and
sector. Subsequently, the monitored black carbon (BC) concentrations
were converted to EC concentrations based on the relationships of BC
and EC established in MATES-V study (SCAQMD, 2021) at the same
monitoring locations.

WRF Meteorology. To ensure that the WRF model simulations used
in this study accurately captured meteorological conditions for 2017 in
California, a comprehensive evaluation was conducted for simulated
surface wind speeds, temperatures, and relative humidity at a 2-km grid
spacing, compared against hourly observations. Detailed evaluations are
provided in SI Appendix Note S2.

2.5. Characterization of potential cancer risk

We adhered to the methodology outlined in the 2015 California
Office of Environmental Health Hazard Assessment’s (OEHHA) “Air
Toxics Hot Spots Program Guidance Manual for Preparation of Health
Risk Assessments” (Guidance) (OEHHA, 2015) to assess the cancer risk
associated with exposure to modeled DPM. Specifically, cancer risks
were determined by multiplying the daily inhalation or oral dose by a
cancer potency factor, age sensitivity factor, frequency of time spent at
home (for residents only), and exposure duration divided by averaging
time. This process yielded the excess cancer risk that results from the
modeled DPM concentrations. For residential inhalation exposure,
excess cancer risk was calculated for each age group and then summed to
determine the overall cancer risk at the receptor locations. The following
equations demonstrate the calculation of residential inhalation cancer
risk:

ED
Riskinn—res = DOSE; x CPF x ASF x a7~ FAH (Eq- 1)
DOSE-—C-xﬁxAxEFxm*6 (Eq. 2)

awr — air BW q
where:

Riski.n_res = Residential inhalation cancer risk
DOSE,; = Daily inhalation dose (mg/kg-day)

Table 1
Annual emission totals (in ton/year) of DPM in each modeling domain in 2017.
Category Sac BA SJV SC SD* IMP*
On-road 270.21 349.28 542.51 743.82 160.42 33.76
Off-road Commercial Harbor Craft 11.09 85.1 6.24 26.98 17.40 0.08
Cargo Handling Equipment 0.02 1.67 0.03 10.49 0.22 0.00
Locomotives 28.54 27.89 55.92 110.24 10.33 18.98
Transport refrigeration units 16.35 30.76 18.76 55.43 11.45 0.92
Ocean-going vessels 0.01 10.03 0.62 5.92 2.44 0.00
Area Agriculture 362.32 75.42 923.29 47.86 41.90 36.70
Construction 93.89 139.05 183.47 415.14 84.09 10.76
Point without exact location 0.05 0.00 0.00 0.00 0.00 0.00
Aggregated area-point 88.15 144.73 164.99 278.09 67.28 3.54
Stationary point 5.34 6.41 7.31 33.45 11.24 0.84

Note: The emissions from Mexico are not included.


https://ww2.arb.ca.gov/our-work/programs/msei/emfac2017-model-and-documentation
https://oehha.ca.gov/air/crnr/notice-adoption-air-toxics-hot-spots-program-guidance-manual-preparation-health-risk-0

S. Du et al.

CPF = Inhalation cancer potency factor ((mg/kg-day)™1)

ASF = Age sensitivity factor for a specified age group (unitless)

ED = Exposure duration (in years) for a specified age group.

AT = Averaging time for lifetime cancer risk (years)

FAH = Fraction of time spent at home (unitless)

C,ir = Daily average concentration in air (pg/m3)

BR/BW = Daily breathing rate normalized to body weight (L/kg
body weight-day)

A = Inhalation absorption factor (unitless)

EF = Exposure frequency (unitless), days/365 days.

We used a 30-year exposure duration and the Risk Management
Policy (RMP) method with 95th/80th percentile daily breathing rate
(DBR) to assess residential potential cancer risk.

DPM exposure and associated cancer risks, as generated by the
model, were initially reported at the census block level statewide. These
exposure levels and associated cancer risks were then aggregated to the
census tract level using a population weighted approach. Spatially
resolved cancer risks at the census tract level were calculated as follows:

PWRi=) risk;(j) i(7) (i
i ;ns X pop /]Zpopl(,)

(Eq. 3)

where.

risk; — risk at census tract i
pop;(j) - population in j-th block within census tract i
risk;(j) - cancer risk at j-th block within census tract i

>popi(j) — total population within census tract i.

Population data for year 2010 were used to calculate population
weighted cancer risk. The U.S. Census Bureau publishes population data
every ten years.

2.6. Calculation of non-cancer health impact

DPM, a component of ambient PMs s, is widely recognized as a sig-
nificant contributor to air pollution-related health effects, including
premature mortality. In this part, we utilized the Environmental Benefits
Mapping and Analysis Program (BenMAP-CE v1.5.8) (Coffman et al.,
2024) developed by the U.S. EPA to estimate the reduction in mortality
resulting from decreased DPM exposure between 2012 and 2017. This
analysis aimed to assess the effectiveness of CARB’s regulatory programs
in reducing DPM’s non-cancer health impact. We used the following
concentration-response function:

M = baseline incidence x population x (1 — e /) (Eq. 49
where f is a coefficient value for PM; 5 cardiopulmonary mortality, and
Cppum is the annual average concentration of DPM. f values, population
data and baseline incidence rates for health impact functions were ob-
tained from the BenMAP database (2010 census data for population, and
2015 incidence were used for both 2012 and 2017 calculation). We used
Eq. (4) to calculate the cardiopulmonary mortality impact of DPM for
each age group in each census tract for the years of 2012 and 2017.
These values were then summed to get the total mortality impact of
ambient DPM for each air basin and the whole state of California for
2012 and 2017. Note that other health impacts such as cardiovascular or
respiratory hospitalization, and respiratory emergency room visits,
including for asthma, due to exposure to DPM were not included in this
study.
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3. Results and discussion

3.1. Spatial distribution of DPM exposure and comparison with
observations

Fig. 2 illustrates the spatial distributions of 2017 DPM concentra-
tions in the modeling domains, sampled and plotted at census block
resolution. The figure clearly indicates elevated concentrations pri-
marily in major urban areas such as Los Angeles, San Francisco, and San
Diego. These concentrations align with transportation corridors
including freeways, major arterials, seaports, and railyards. Higher DPM
levels are also observed along State Route 99 and major urban centers
like Bakersfield and Fresno, attributed to on-road mobile sources and
heavy agricultural activities in the San Joaquin Valley. Additionally,
elevated concentrations are evident in the communities adjacent to the
Mexico-United States border, which result from DPM emissions in
Mexico transported into the U.S.

To evaluate our CALPUFF modeling, we compared modeled EC
concentrations with monitoring data detailed in Materials and Methods.

SI Appendix Fig. S7 presents the comparison between our modeled
total and fossil-fueled EC annual average concentrations against
observed BC provided by the SCAQMD (2022). Studies indicated that BC
and EC concentrations are similar within the measurement accuracy
range (Pileci et al., 2021). In order to compare with modeled EC con-
centrations, BC concentrations were converted to EC concentrations
based on EC and BC relationships derived from EC and BC data observed
at the same monitoring locations. Overall, the model performance is
reasonable. Several statistics of model performance were calculated. The
normalized mean errors (NME) were 0.311 and 0.333, respectively, for
total and fossil EC. The corresponding normalized mean biases (NMB)
were —0.018 and —0.094, and the coefficients of determination ®?»
were 0.460 and 0.468, respectively. This level of performance for EC
modeling can be considered satisfactory (Simon et al., 2012).

In summary, CALPUFF demonstrates reasonable performance in
simulating annual average EC concentrations. Given that DPM and EC
emission inventories were developed using the same methodology and
data sources, the confidence level of modeled DPM annual concentra-
tions by CALPUFF should be comparable to that of EC.

3.2. Characterization of cancer risk and trend analysis

Potential excess cancer risk of DPM was calculated by multiplying
the annual average concentrations of DPM with the inhalation unit risk
factor. Note that only inhalation exposure was considered in this study,
which was shown to be the major exposure pathway by SCAQMD's
MATES-V study (93 %) (SCAQMD, 2021) and our internal studies at
CARB (over 95 %). The results were expressed as potential cancer in-
cidences per million people, or chances per million.

Fig. 3A depicts the spatial distribution of estimated DPM cancer risk
in 2017 at the census block level statewide. Not surprisingly, the spatial
pattern of DPM cancer risk closely mirrors that of DPM concentrations.
High risks are distributed along major freeways and urban centers, as
well as in communities near the California-Mexico border, where
pollution transported from Mexico contributes to higher risks. In
essence, areas with heightened risk tend to align with transportation and
goods movement corridors, such as major freeways, seaports, airports,
railyards, and near the border.

Fig. 3B shows the reduction of DPM cancer risk from 2012 to 2017. It
is evident that a significant reduction in DPM risk is observed across
most areas within the six air basins. The most substantial percentage
decrease in risk is noted in major urban areas with high population
density, as well as transportation and goods movement corridors. This
reduction reflects the decline in DPM emissions from trucks on major
freeways and off-road mobile sources such as ports and railyards, among
others, which can be linked to major past and current regulations such as
the On-Road Truck and Bus Rule and regulations of OGV and port
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activities.

Some increases in cancer risk are seen in certain low-risk areas
(warm-colored areas in Fig. 3B), including the northern Bay Area and
the eastern regions of the San Diego air basin near the San Diego-Mexico
border, as well as the northwest corner of Imperial County. These un-
expected increases in cancer risk could be attributed to improvements in
the emission inventory. For example, improvements in reporting of
emissions, and emission sources that were present in the 2017 inventory
but not in the 2012 inventory. Another reason is that some sources
commenced to emit between 2012 and 2017. Examples include rezoning
properties that had a net emission increase, e.g., rezoning an agricultural
land into industrial zone, and relocation of some industrial facilities to
the area where cancer risk is found to have increased. Additionally, due
to the nature of construction activities, some projects that were active in
2017 might not have existed in 2012.

Another notable finding is that communities in San Diego and Im-
perial Counties near the California-Mexico border show relatively small
reductions in risk. This can be attributed to updates in the Mexican
emission inventory, which can change substantially over time. Despite

significant reductions within San Diego and Imperial Counties, the
overall reduction in risk was minimal since over 2/3 of the risk in these
communities was caused by emissions transported from Mexico.

The population weighted potential cancer risks of DPM for each of
the six air basins are presented in Fig. 4. Also shown are the percentage
reductions in each air basin. Please note that the population weighted
risk was calculated with population in every census block within each
air basin’s jurisdiction, not the entire modeling domain. Clearly, cancer
risks were quite different in different air basins and the South Coast had
the highest cancer risk among all air basins. Basin-wide reductions in
cancer risk were also different and the greatest reduction from 2012 to
2017 occurred in the San Joaquin Valley. Overall, the risk reduction
from 2012 to 2017 in California was significant. The population
weighted DPM cancer risk was reduced by 42 % statewide with a range
from 19 % to 59 % in individual air basins. Supplementary to the pop-
ulation weighted risk, Fig. 5 presents how the cancer risk was distributed
in 2017. It is seen that the highest cancer risk in the Sacramento Valley
corresponds to about 50th percentile of the risk in the South Coast air
basin, revealing the disparity in cancer risk among air basins. Another
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Imperial County where the mode is the lowest among all air basins, the 0.002
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Fig. 6 presents DPM risk histograms and cumulative population Imperial
percentage exposed to certain levels of cancer risk for 2012 and 2017, 0.002
respectively. It shows clearly the general downward trend of cancer risk
and in particular much fewer people being exposed to any given level of
. . : . . . 0.000
high risk. For example, in 2012, about 10 % of the population lived in 0 500 1000 1500 2000 2500

areas with 1500 per million cancer risk, in 2017 the level was reduced to
about 750 per million.

Overall, the risk reduction from 2012 to 2017 in California was
significant. The population weighted DPM cancer risk was reduced by
42 % statewide with a range from 19 % to 59 % in individual air basins
(Fig. 4). As shown in Figs. 5 and 6, the percentage of cumulative pop-
ulation exposed to high-level of DPM risk shrank from 2012 to 2017,
demonstrating the overall benefit of DPM emission reduction. For
example, in 2012 half of the population in the state were exposed to
cancer risk levels below (and above) 800 chances per million, while in

Chances per million

Fig. 5. DPM cancer risk distribution (chances per million) for each air basin at
the census tract level in 2017.

2017 the level was reduced to less than 500 chances per million. The
histograms show a shift of the population distribution toward lower
cancer risks, further revealing the benefit of emission reduction.

A further analysis of the cancer risk reduction distribution reveals
that census tracts with higher population densities tended to have more
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significant reductions in DPM cancer risk from 2012 to 2017. Fig. 7
shows that the reduction in DPM cancer risk from 2012 to 2017
monotonically increased with population density, i.e., more densely
populated areas tended to gain more reduction in cancer risk. In order
words, the geographical disparity in DPM cancer risk decreased with
time. SI Appendix Fig. S8 further shows that this statewide trend of
reduction in disparity holds in each of the air basins. The reduction may
be attributable to the fact that high population density areas coincided
with major on-road emission sources (SI Appendix Figs. S3 and S9), and
the on-road emission sector experienced the largest risk reduction from
2012 to 2017 (SI Appendix Table S5). This suggests that regulatory
measures like the Truck and Bus Rule have successfully targeted the
most impactful emission sources and thus led to meaningful
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improvements for communities facing a disproportionate burden of
DPM exposure. On the other hand, the extent of correlation varies in
different air basins (SI Appendix Fig. S8). The highest correlation be-
tween risk reductions and population densities was observed in Imperial
and the lowest was observed in Bay Area.

3.3. Characterization of non-cancer risk and trend analysis

Statewide and air-basin wide non-cancer health impacts, i.e., all-
cause mortality, from DPM exposure for the years 2012 and 2017
were estimated by treating DPM as part of PMjy 5 (shown in Fig. 8a and
b). In the BenMAP calculation, BenMAP default 2015 incidence and
2010 census track level population were used. Two all-cause mortality
health impact functions (HIF) were chosen to avoid bias caused by
choosing one HIF over the other. One is from Turner et al. (2016), and
the other is from Pope et al. (2015). Similar results were obtained with
these two HIFs (Fig. 8a vs. Fig. 8b), suggesting that the outcome of the
BenMAP calculation is not affected by the choice of HIF. For the year
2012, the statewide mortality attributable to DPM exposure was esti-
mated at 70 premature deaths per 1 million population (1290 total
deaths) based on Turner et al. (2016) and 81 premature deaths per 1
million population (1495 total deaths) based on Pope et al. (2015). Our
analysis showed an approximate 50 % decrease statewide in mortality
due to exposure to the diesel portion of PMy s from 2012 to 2017
(Fig. 8c). For the year 2017, we estimated 36 premature deaths per 1
million population based on Turner et al. (2016) and 42 premature
deaths per 1 million population based on Pope et al. (2015), as shown in
Fig. 8a and b.

Breaking down the results by six air basins, South Coast accounts for
the largest number of DPM-related premature deaths (Fig. 8a and b bar
chart) due to its large population (SI Appendix Fig. S10a) and relative
higher DPM concentration compared with other air basins (SI Appendix
Fig. S10b), followed by Bay Area and San Joaquin Valley. In contrast,
Imperial, Sacramento Valley and San Diego have fewer DPM-related
premature deaths, either due to the small population share (Imperial,
SI Appendix Fig. S10a), or relative lower DPM exposure (Sacramento
Valley, SI Appendix Fig. S10b). When population size is normalized
(expressed as deaths per 1 million residents), the pattern of deaths per 1
million aligns closely with the distribution of DPM exposure across the
six air basins. South Coast still shows the highest mortality rate, followed
by San Joaquin Valley and Bay Area. It is interestingly to note, while
Imperial has the smallest area and population, it is not the least
impacted air basin because of its high per-capita DPM exposure, most of
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Fig. 7. Tract-level DPM cancer risk reduction by population density percentiles represented by colors. The horizontal axis represents population density percentiles,
and the vertical axis shows the level of cancer risk reduction. Boxes are defined as the interquartile range (IQR) of each subgroup, including the median (central line),
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which comes from cross-border transport from Mexico.

Non-cancer risk reductions from 2012 to 2017 are shown in Fig. 8c.
In general, premature death reduction rates in air basins follow the trend
of cancer risk reduction rate (Fig. 4). The reductions in cancer and non-
cancer health effects for DPM align with the reduction in DPM emissions
over the same period. This reduction underscores the effectiveness of
many of CARB’s diesel-related emission control regulations imple-
mented over the past 2-3 decades. For instance, regulations such as the
On-road Trucks and Buses rule (CARB, 2008) have played a crucial role.
This rule mandated the replacement and retrofit of diesel-fueled en-
gines, including the installation of diesel particulate filters, as well as the
use of ultra-low-sulfur (<15 ppm) diesel fuel. Other measures have
included substituting electric power for diesel where feasible and
tightening emissions limits for both new and existing diesel engines.
These efforts collectively contributed to the decrease in DPM emissions
and associated health impact across the state.

Although the focus of the present study is to characterize regional
and statewide cancer risks, it is worthwhile noting that the modeled
results contain fine scale variations of DPM concentrations, e.g., the
granular information of DPM concentrations within communities. Get-
ting detailed variations of DPM risk does not require any additional
effort since all results needed for this purpose have already been
included in the model output. One can simply choose a community of
interest and zoom in on the map in our data portal and visualization
mapping tool (https://california-air-toxics-assessment-californiaarb.
hub.arcgis.com/). Fig. 9 shows an example of community level details
of inhalation cancer risk caused by exposure to ambient DPM concen-
trations. The community is referred to as the Portside Environmental
Justice Neighborhoods Community, which includes neighborhoods of
Barrio Logan, West National City, Logan Heights, and Sherman Heights
in South San Diego. The Community has been selected by California’s
Community Air Protection Program for Community Air Monitoring
Plan and Community Emissions Reduction Program. Clearly, spatial
variation of DPM cancer risk in the community is strong, meaning that
residents living in the same community can be impacted very differently
by DPM. The detailed information of how DPM risk varies within the
community and its source apportionment provides additional leverage
to reduce DPM risk locally.

3.4. Source apportionment of DPM

In this study, each emission source sector was modeled separately to
enable the quantification of contributions from each sector. This
approach is valuable for informing future emission control efforts,
particularly as DPM emission reductions are primarily achieved through
sector-based policies at both the state and federal levels.

Fig. 10A illustrates the relative contribution of each sector to total
statewide DPM cancer risk in 2017, with on-road mobile sources being
the most significant at approximately 59 %, followed by aggregated
area-point sources (16 %) and locomotives (8 %). Notably, source ap-
portionments vary across air basins (Fig. 10B). In most air basins, on-
road mobile sources contributed over 50 % to total risks, despite emit-
ting less than half of the total DPM emissions (Table 1). The exception
was Imperial County, where Mexico sources dominated due to large
emission sources close to the border on the Mexico side, and higher
population density near the border on the U.S. side.

The disproportionately higher contribution from on-road sources to
cancer risk is attributed to their proximity to populated areas (SI Ap-
pendix Figs. S1 and S9). Conversely, emissions from agricultural activ-
ities in Sacramento Valley and SJV, while double that of on-road
emissions, pose lower cancer risks due to their distance from populated
urban areas. This underscores the importance of considering the spatial
distribution of emissions and ambient concentrations over absolute
emission rates in risk characterization. It also supports California’s
regulatory focusing on reducing DPM risk from on-road mobile sources.

3.5. Limitations and caveats

Although this study reflects the best state-of-the-science efforts in
emissions processing and air quality modeling, it is important to
recognize certain caveats and limitations to ensure the accurate inter-
pretation of the modeling results. In this study, the emission inventory
was developed using the best-available datasets and methodologies to
quantify emissions from a wide range of sources. However, it’s widely
recognized that emission inventories are subject to uncertainties
regarding the locations and release rates of emission sources (Davison
et al., 2021). Missing emission sources and errors in emission estimates
associated with stationary sources will be addressed by CARB’s newly
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Fig. 9. DPM cancer risk in the Portside EJ Neighborhood, encircled by the blue line. (For interpretation of the references to color in this figure legend, the reader is

referred to the Web version of this article.)

implemented Criteria Pollutant and Toxics Emissions Reporting (CTR)
system (CARB, 2020). Additionally, air quality modeling, including the
CALPUFF model utilized in this study, inherently involves numerous
approximations (Hanna, 1988). For instance, uncertainties exist in how
emission sources are represented in the modeling process and in the
development of the meteorological field used to drive the air quality
models. These uncertainties can lead to inaccuracies in the estimations
of ambient DPM concentrations.

Another significant source of uncertainty arises from the calculation
of cancer risk based on DPM concentrations, coupled with numerous
parameters that influence the uptake of ambient DPM into human
bodies. In this study, health risks were assessed using the risk assessment
guidance developed by OEHHA, which involves numerous sources of
uncertainty and tends to be overly conservative (OEHHA, 2015). As
outlined in the OEHHA Guidance, sources of uncertainty in risk esti-
mates include, but are not limited to: (1) extrapolating toxicity data
from animals to humans; (2) uncertainty in estimating emissions; (3)
uncertainty in air dispersion models; and (4) uncertainty in exposure
estimates. These factors contribute to the overall uncertainty
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surrounding the assessment of health risks associated with DPM
exposure.

Despite these limitations, this study offers the most reliable estimate
of cancer risks in California based on a recent emissions inventory,
OEHHA guidance, and U.S. EPA air quality modeling guidelines. It
should be noted that this study is based on both 2012 and 2017 emis-
sions data, which may differ significantly from current levels. Future
studies will focus on more recent emission estimates, but the nature of
inventory development and the time it takes to conduct the detailed
modeling means there will always be a disconnect between the model
assessment year and the present day.

Ideally, emissions data for the most recent years should be used so
that the modeled results reflect the current status of air quality, and
more importantly, provide more meaningful guidance for future emis-
sion reduction efforts. However, for statewide studies such as this one, a
latency is not only expected, but necessary to develop comprehensive
and detailed emissions inventories and conduct air quality modeling.
This study represents a multi-year (3-5 years), iterative, comprehensive
and resource-intensive effort at characterizing the health impact from
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DPM across California, involving extensive emissions inventory prepa-
ration, large-scale and fine-resolution modeling for over 30 emission
sectors, and post-processing. Consequently, the findings presented in
this paper should be interpreted with caution, and extrapolations from
2012 to 2017 results are not recommended, as new emission reduction
plans implemented since 2017 are not being accounted for. In addition,
Fig. 11A and B shows that the combined effect of past and current
emission control measures and regulations as we knew them will cause
shifts in emission trends, in particular around year 2025, for both total
and major categories of DPM sources across the state, and the general
trend of cancer risk reductions are expected to change accordingly.
Therefore, to verify whether these projected changes in emission trends
occur, it is recommended that the status of DPM pollution be reassessed
every few years with the most recent emissions data.

As more source testing, refined emission inventory, advanced
modeling technologies, and updated health data become available,
exposure and risk assessment for 2025 and beyond will be more robust
and accurate.

3.6. Conclusions and policy implications

To our knowledge, this is the first study to quantify DPM exposure
and associated health risks using an integrated modeling approach at
scales ranging from local communities to statewide, incorporating all
emission sources. This level of detail and computational intensity has
not been previously reported in the literature. CARB’s comprehensive
DPM emission inventories provided a valuable foundation for this novel
research, offering a more accurate and reliable foundation for source
apportionment, trend analysis, and guiding regulatory efforts.

Source apportionment analysis revealed that different emission
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sources contributed variably to overall risk: on-road mobile sources
accounted for 59 %, off-road mobile sources for 19 %, area sources for
21 %, and stationary sources for 1 % of the overall risk in 2017.
Compared to 2012, the statewide population weighted cancer risk
associated with DPM exposure decreased by 43 %, largely due to various
CARB DPM emission control regulations and policies. Future emissions
projections indicate significant reductions in on-road DPM emissions,
primarily driven by ongoing efforts like the On-road Truck and Bus Rule.
More specifically, as shown in Fig. 11, between 2018 and 2025, the
contribution of on-road sources to inhalation cancer risk continues to
decline and is eventually surpassed by the combined contributions from
off-road and area-wide emission sources. In contrast, the reduction in
health risk from off-road mobile and area sources was relatively slow
from 2012 to 2017 (SI Appendix Table S5) and that is projected to
continue. Therefore, future emission reduction efforts will likely need to
prioritize off-road mobile sources, including cargo-handling equipment
(CHE), transport refrigeration units (TRUs), and locomotives. Although
the bulk of ocean-going vessel (OGV) emissions arise far away from
population centers, the rapid growth of the OGV sector (Fig. 11B) from a
net increase in activity and fewer regulations means a future focus on
reducing emissions from that sector is warranted. Additionally, Cali-
fornia could benefit from reducing emissions from area sources, such as
construction and agriculture sectors, which have benefited from incen-
tive programs in the past that have led to a reduction in emissions
through the replacement of older and higher emitting equipment. In
particular, the agriculture sector becomes increasingly relevant in terms
of its contribution to total inhalation cancer risk due to its slower
reduction rate compared to on-road mobile sources. After 2025, total
DPM emissions are projected to level off. This change in the trends im-
plies that additional measures will have to be developed and
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implemented so that the cancer risk associated with DPM will continue
to decrease. Advances in technology will facilitate the promotion and
adoption of zero-emission technologies across all emission sectors.

In summary, although significant progress has been made in
reducing DPM emissions over the past few decades, DPM-related health
risks remain high and continue to be a major toxic air pollutant in
California. Therefore, further reductions in DPM emissions are essential.
Since DPM particles are smaller than 2.5 pm, they are a part of PMj 5. As
shown in Fig. 2, some localized areas have annual average DPM con-
centrations exceeding 2 pg/m?, constituting a significant fraction of
total PMy 5 at that time (https://www.arb.ca.gov/aqmis2/aqdselect.php
). Consequently, reduction in DPM emissions since 2017 has not only
reduced overall risk but also contributed to lowering overall PM; 5
levels.

While the present study focused on California, the methodology can
be applied to other regions. It is likely that these general findings could
be relevant across the United States, as some states have adopted similar
regulatory efforts after California’s initiatives.
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