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A B S T R A C T

Diesel particulate matter (DPM) has been recognized as a carcinogen and identified as a toxic air contaminant 
(TAC) in California and other jurisdictions. In response to this identification, the California Air Resources Board 
(CARB) has adopted numerous regulations aimed at reducing DPM emissions from various sources. This study 
utilized an integrated modeling approach to simulate ambient DPM concentrations for individual emission 
sectors separately for the two years 2012 and 2017. The associated health impacts, including cancer risk and non- 
cancer effects, were then assessed. This assessment provided a basis for apportioning emission sources, analyzing 
reduction trends, and informing further regulatory efforts when combined with future emissions projections.

Our results showed a significant reduction in DPM-related cancer risk in California between 2012 and 2017. 
Specifically, population weighted DPM cancer risk decreased by 42 %, and mortality attributable to DPM 
exposure decreased by about 50 % statewide. Additionally, census tracts with higher population densities 
consistently experienced more significant reductions in DPM cancer risk from 2012 to 2017.

Source apportionment analysis indicated that, as of 2017, on-road mobile sources were the largest contributor 
to overall DPM risk, followed by off-road mobile, area, and stationary sources. Our findings further suggest that 
while the overall health risk from DPM will continue to decline with emissions, the relative contributions of each 
emission sector to DPM risk may shift over time depending on the major regulations in place, and how the 
emission reductions impact nearby population. When accounting for how emissions have changed since 2017 
and are projected to change in the future, new emission reduction efforts will likely need to prioritize off-road 
mobile sources (e.g., seaports, airports, locomotives) and area sources (e.g., construction and agricultural sec
tors) to achieve further risk reductions, especially beyond 2025.

1. Introduction

Diesel particulate matter (DPM) is widely recognized for its signifi
cant health impacts due to containing over 40 known carcinogenic 
substances (CARB, 2025). In 1998, the California Air Resources Board 
(CARB) identified and classified DPM as a Toxic Air Contaminant (TAC) 
(CARB, 1998), prompting a concerted effort to reduce its emissions. 
CARB adopted the Diesel Risk Reduction Plan (DRRP) in 2000 (CARB, 
2000), leading to the adoption of various regulations targeting emissions 
from heavy-duty diesel engines, trucks, buses, and other sources.

The implementation of these regulations has yielded tangible results, 

with reported reductions in emission rates of elemental carbon (EC), a 
major component of DPM, and other pollutants from trucks operating on 
California roadways (Kozawa et al., 2014; Bishop et al., 2015; Dallmann 
et al., 2012; Preble et al., 2015; Kuwayama et al., 2013). Additionally, 
California enacted diesel fuel regulations aimed at reducing sulfur and 
aromatic hydrocarbons in both vehicular and non-vehicular emissions to 
address regional air quality issues related to ozone (O3) and particulate 
matter (PM) pollution. Lower sulfur content in diesel fuel has been 
linked to reduced DPM emissions (Weaver et al., 1986; Saiyasitpanich 
et al., 2005; Ristovski et al., 2006; Zhang et al., 2009).

DPM has been considered as a major contributor to excess cancer risk 
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in California due to its high carcinogenic potency and substantial 
emission levels. Additionally, DPM poses other health concerns such as 
negative effects on immunological or inflammatory systems (Sydbom 
et al., 2001), the cardiovascular system (Campen et al., 2003), and 
respiratory system (Ristovski et al., 2012). Progress in reducing health 
risks associated with DPM is typically assessed based on the magnitude 
of emission reductions (Lloyd and Cackette, 2001; Schwarzman et al., 
2021). However, it is important to recognize that the health risk linked 
to DPM is more closely tied to ambient concentrations than simply to 
emission rates. This is because exposure and subsequent risk are deter
mined by the ambient concentration of DPM, which can be significantly 
different from magnitude and spatial distribution of emissions because 
of the transport and diffusion processes in the atmosphere. The focus of 
the present study is to accurately estimate statewide ambient concen
trations of DPM and inhalation health risks from DPM using an air 
quality modeling approach. It is crucial to use ambient concentrations, 
instead of emissions, to evaluate past, present, and future exposure 
levels, as well as to track the efficacy of efforts to reduce DPM emissions. 
Furthermore, DPM emissions originate from various sources, including 
on-road mobile, off-road mobile, area, and stationary sources. In this 
study, area sources represent all emission sources that are not classified 
as on-road mobile, off-road mobile or major stationary sources. Exam
ples include farm equipment and portable engines; they are treated as 
area sources because they don’t have unique locations over time, mak
ing it difficult to precisely specify where and when pollutants are 
released. Each emission source may contribute differently to the overall 
health impacts of DPM. Therefore, there is a pressing need to not only 
assess the absolute contribution of each emission source but also to 
understand their relative importance. Investigating the relative contri
bution of different emission sources can provide valuable insights for 
prioritizing and targeting mitigation efforts effectively.

The concentration of DPM in the atmosphere is influenced by the 
magnitude of emissions as well as by factors such as the location of 
emission sources relative to receptors, terrain features, and meteoro
logical conditions. To more accurately assess the health impacts of DPM 
on both regional and local scales in California, high-resolution datasets 
of DPM concentrations that are both spatially and temporally resolved 
are essential. However, it is not possible at present to directly measure 
ambient DPM. Researchers have employed indirect methods to estimate 
these concentrations. For example, one approach involves using EC and 
nitrogen oxides (NOx) as surrogates for DPM and estimating DPM con
centrations by scaling EC or NOx concentrations. However, these 
methods have been implemented without rigorous justifications 
(Verma, 2003; Propper et al., 2015; Hedmer et al., 2017). Even when the 
means of directly measuring DPM in the atmosphere becomes available, 
obtaining comprehensive measurements of DPM concentrations on 
regional and fine spatial scales over an extended period, such as an 
entire year, is extremely labor- and instrument-intensive, posing sig
nificant challenges due to resource constraints and high costs. Therefore, 
alternative approaches, such as air quality modeling, are necessary and 
often used to estimate DPM concentrations and assess associated 
long-term health impacts.

The U.S. EPA’s National Air Toxics Assessment (NATA) (U.S. Envi
ronmental Protection Agency, 2016) uses a combination of the Com
munity Multiscale Air Quality Modeling (CMAQ) system (U.S. 
Environmental Protection Agency, 2025a) and the AERMOD dispersion 
model (U.S. Environmental Protection Agency, 2025b) to estimate 
ambient hazardous air pollutant (HAP) concentrations at the national 
level, with CMAQ employing grid resolutions of 12 km × 12 km or 
coarser. Regional assessments in California, such as the South Coast Air 
Quality Management District’s (SCAQMD) MATES studies (SCAQMD, 
2021) and the Bay Area Air Quality Management District (BAAQMD) 
efforts (BAAQMD, 2014) utilize photochemical models, i.e., Compre
hensive Air Quality Model with Extensions (CAMx) and CMAQ, at res
olutions of 2 km × 2 km and 1 km × 1 km, respectively. While these 
models effectively simulate reactive toxins, they have limitations in 

accurately characterizing local exposures such as at community levels 
due to their coarse resolutions. Conversely, modeling at finer spatial 
resolutions can provide more detailed and accurate assessments of 
pollutant concentrations at the local level (Hamilton and Harley, 2021).

In this study, we employed an integrated modeling approach (Fig. 1) 
to quantify DPM exposure and assess associated health risks across 
California, from local communities to the statewide level. This approach 
accommodated emission sources by sector and allowed us to analyze 
trends in exposure and health impacts over time, providing a means to 
evaluate the effectiveness of California’s DPM emissions regulations. By 
quantifying the contributions of different emission source categories to 
overall DPM impact, we can prioritize future emission reduction efforts. 
The overarching aim of this study is to inform and support the devel
opment of targeted regulations and policies that further reduce DPM 
emissions in California.

The objectives of our study are threefold: 1) to quantify ambient 
exposure to diesel particulate matter (DPM) and assess associated health 
impacts in California; 2) to analyze the trend in exposure and health 
impacts over time to evaluate the effectiveness of California’s DPM 
emissions regulatory efforts; and 3) to quantify the relative contribu
tions of each emission source category/sector to the overall DPM impact. 
The analysis also aims to inform and support the development of further 
regulations and policies targeting specific emission sources.

2. Materials and Methods

2.1. Modeling domains

Six separate modeling domains, covering the most populous regions 
of California, were used to simulate statewide ambient DPM concen
trations. This approach was chosen over a single statewide modeling 
domain due to limitations in present-day computational resources, such 
as processing time, storage capacity, and memory requirements. The 
domains are listed from north to south as follows: Sacramento Valley 
(SV), Bay Area (BA), San Joaquin Valley (SJV), South Coast (SC), San 
Diego (SD), and Imperial County (IMP) (SI Appendix Fig. S1). The pop
ulation within these modeling domains accounted for approximately 99 
% of the state’s total population based on 2010 census data. Based on 
our current understanding of toxic pollutant emissions, these domains 
should cover all populated areas significantly impacted by toxic air 
contaminants. SI Appendix Fig. S1 shows the six modeling domains along 
with the major on-road sources (traffic links) in each domain. Additional 
information is provided in SI Appendix Table S1 including population, 
and the number of census tracts and census blocks. The modeling pe
riods for this study were selected to cover the years 2012 and 2017, 
which were the years with the most complete and recent regulatory 
emission inventory and meteorology at the time of this study.

2.2. Air quality and meteorological models

Air Quality Model. The objective of the air quality modeling was to 
assess the current state of DPM exposure across California and trends in 
ambient DPM concentrations over time. Traditionally, for regional-scale 
air quality modeling, grid-based regional-scale photochemical models, 
such as CMAQ and CAMx are usually the preferred modeling platform 
(e.g., Buonocore et al., 2014). Since the major portion of DPM mass like 
EC, ash and metallic abrasion particles is inert and the chemical reaction 
pathways among the reactive components are essentially not known, it 
is reasonable to treat DPM as an inert pollutant. For inert pollutants, air 
dispersion models have several advantages over grid-based photo
chemical models. In dispersion modeling, the location and spatial extent 
of emission sources can be more accurately represented. For example, 
on-road mobile sources can be treated as “road-segment-like” line 
sources instead of area sources with dimensions coincident with the 
modeling grids. Another advantage is that in dispersion modeling, re
ceptors (places where concentrations are computed) can be placed 
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anywhere in the modeling domain, such as centroids of census blocks 
and census tracts, as well as places of interest and sensitive receptors (i. 
e., monitoring sites, schools, hospitals, senior homes, daycare centers, 
etc.). In grid-based models however, modeled concentrations represent 
averaged values over grid cells. In short, dispersion models can char
acterize source-receptor relationships more accurately.

In this study, CALPUFF was selected due to its thorough evaluation 
(U.S. Environmental Protection Agency, 1998a; Rzeszutek, 2019) and its 
suitability for regional-scale air quality assessments (U.S. Environmental 
Protection Agency, 1998b). CALPUFF is a three-dimensional non-
steady-state puff dispersion model. It can incorporate time- and 
space-varying meteorological conditions caused by weather systems as 

well as the complexity of surface geophysical features like terrain vari
ations and inhomogeneity of land cover. As such, CALPUFF can be uti
lized in scales from local up to regional applications.

CALPUFF version 5.8.5 (U.S. Environmental Protection Agency, 
2017a) was used in this study. Concentrations were estimated at the 
centroids of census blocks, at sites where sensitive population groups are 
located, such as senior homes, schools, hospitals, and daycare centers, as 
well as regulatory air quality monitoring sites in the state.

Meteorology Model. In this study, meteorological fields generated 
by the Weather Research and Forecast (WRF) (Skamarock et al., 2005) 
version 3.9.1.1 (NCAR, 2017), a prognostic model, were processed with 
the Mesoscale Model Interface Program (MMIF), version 3.4.1. (U.S. 
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Fig. 1. Integrated modeling framework. Flowchart of the methodology to calculate DPM concentrations and to estimate health risks. Further analyses of source 
apportionment and geographic disparity as well as policy implications are also major components of the present study.
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Environmental Protection Agency, 2017b). MMIF converts WRF output 
fields to the parameters in the CALPUFF-ready format.

The WRF meteorological modeling domain consisted of four nested 
Lambert projection grids of 36 km (D01), 12 km (D02), 4 km (D03), and 
2 km (D04) uniform horizontal grid spacing (see SI Appendix Fig. S2). 
WRF was run simultaneously for the four nested domains with two-way 
feedback between the parent and nested grids, where the parent (outer) 
domain provides lateral boundary conditions to the next interior 
domain, while the interior domain provides higher resolution feedback 
to its parent domain. The D01 and D02 grids were used to resolve the 
larger scale synoptic weather systems, while the D03 and D04 grids 
resolved the finer details of the atmospheric conditions and were used to 
drive the air quality model simulations, depending on the need of air 
quality modeling. In this work, meteorological fields on the 2 km grids 
were used. Vertical variations of meteorological fields were resolved by 
30 vertical hybrid sigma-pressure levels, which stretched from the sur
face to 100 hPa and contained ten layers within the first kilometer above 
the surface (SI Appendix Table S2). Initial and boundary conditions (IC/ 
BCs) were based on North American Regional Reanalysis (NARR) data at 
32 km horizontal resolution. The IC/BCs were further amended with 
surface and upper air observations obtained from the National Center for 
Atmospheric Research (NCAR). The major physics options for each 
domain are listed in SI Appendix Table S3.

2.3. DPM emissions inventory

In this study, DPM emission data were categorized into four major 
groups: on-road mobile, off-road mobile, area sources and major point 
sources. Each category was further processed into multiple emission 
sectors (SI Appendix Table S4), around 30 sectors in total. For example, 
off-road mobile sources were subcategorized into commercial harbor 
craft (CHC), cargo handling equipment (CHE), locomotive (LOC), 
transport refrigeration unit (TRU), airports, seaports including port 
trucks (drayage), ocean-going vessels (OGV), etc. Doing so allowed us to 
conduct dispersion modeling for emissions of each sector separately so 
that their contributions to the overall exposure and excess cancer risk 
could be quantified. The emission data for off-road mobile sources, area 
sources and stationary sources were obtained from the California 
Emissions Projection Analysis Model (CEPAM) (CARB, 2019) and the 
emissions for on-road mobile sources were developed using the Cali
fornia On-road Emission Factor Model system (EMFAC2017) (CARB, 
2023). The spatial distributions of the four categories’ emissions 
(on-road, off-road, area-wide, and major stationary) are mapped in SI 
Appendix Figs. S3-S6. A summary table of annual total emissions by 
sector is presented in Table 1. To consider potential impacts from the 
emissions in Mexico that were transported into California, a DPM 
emission inventory for regions in Mexico closest to the 
California-Mexico border was also developed based on U.S. EPA’s 
2017NEI (U.S. Environmental Protection Agency, 2017c). Detailed 
emission source treatment and model parameters are presented in SI 

Appendix Note S1.

2.4. Model evaluations

CALPUFF. Prior to using the modeling results for assessing potential 
excess cancer risks, it is essential to evaluate the simulated annual 
average concentrations of DPM against measurement data. However, 
DPM concentrations in ambient air cannot be measured directly. 
Elemental carbon (EC) has widely been recognized as the most suitable 
surrogate for DPM (Schauer, 2003), given its abundance in diesel 
exhaust. Two sets of EC emissions were generated using the same 
methodology and data sources as those for DPM: total EC and fossil-fuel 
EC. The annual average concentrations of total EC and fossil-fuel EC 
were simulated using CALPUFF with identical model configurations as 
those for DPM across the model domains for each emission category and 
sector. Subsequently, the monitored black carbon (BC) concentrations 
were converted to EC concentrations based on the relationships of BC 
and EC established in MATES-V study (SCAQMD, 2021) at the same 
monitoring locations.

WRF Meteorology. To ensure that the WRF model simulations used 
in this study accurately captured meteorological conditions for 2017 in 
California, a comprehensive evaluation was conducted for simulated 
surface wind speeds, temperatures, and relative humidity at a 2-km grid 
spacing, compared against hourly observations. Detailed evaluations are 
provided in SI Appendix Note S2.

2.5. Characterization of potential cancer risk

We adhered to the methodology outlined in the 2015 California 
Office of Environmental Health Hazard Assessment’s (OEHHA) “Air 
Toxics Hot Spots Program Guidance Manual for Preparation of Health 
Risk Assessments” (Guidance) (OEHHA, 2015) to assess the cancer risk 
associated with exposure to modeled DPM. Specifically, cancer risks 
were determined by multiplying the daily inhalation or oral dose by a 
cancer potency factor, age sensitivity factor, frequency of time spent at 
home (for residents only), and exposure duration divided by averaging 
time. This process yielded the excess cancer risk that results from the 
modeled DPM concentrations. For residential inhalation exposure, 
excess cancer risk was calculated for each age group and then summed to 
determine the overall cancer risk at the receptor locations. The following 
equations demonstrate the calculation of residential inhalation cancer 
risk: 

Riskinh− res =DOSEair × CPF × ASF ×
ED
AT

× FAH (Eq. 1) 

DOSEair =Cair ×
BR
BW

× A × EF × 10− 6 (Eq. 2) 

where:
Riskinh− res = Residential inhalation cancer risk
DOSEair = Daily inhalation dose (mg/kg-day)

Table 1 
Annual emission totals (in ton/year) of DPM in each modeling domain in 2017.

Category Sac BA SJV SC SD* IMP*

On-road 270.21 349.28 542.51 743.82 160.42 33.76
Off-road Commercial Harbor Craft 11.09 85.1 6.24 26.98 17.40 0.08

Cargo Handling Equipment 0.02 1.67 0.03 10.49 0.22 0.00
Locomotives 28.54 27.89 55.92 110.24 10.33 18.98
Transport refrigeration units 16.35 30.76 18.76 55.43 11.45 0.92
Ocean-going vessels 0.01 10.03 0.62 5.92 2.44 0.00

Area Agriculture 362.32 75.42 923.29 47.86 41.90 36.70
Construction 93.89 139.05 183.47 415.14 84.09 10.76
Point without exact location 0.05 0.00 0.00 0.00 0.00 0.00
Aggregated area-point 88.15 144.73 164.99 278.09 67.28 3.54

Stationary point 5.34 6.41 7.31 33.45 11.24 0.84

Note: The emissions from Mexico are not included.
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CPF = Inhalation cancer potency factor ((mg/kg-day)− 1)
ASF = Age sensitivity factor for a specified age group (unitless)
ED = Exposure duration (in years) for a specified age group.
AT = Averaging time for lifetime cancer risk (years)
FAH = Fraction of time spent at home (unitless)
Cair = Daily average concentration in air (μg/m3)
BR/BW = Daily breathing rate normalized to body weight (L/kg 

body weight-day)
A = Inhalation absorption factor (unitless)
EF = Exposure frequency (unitless), days/365 days.
We used a 30-year exposure duration and the Risk Management 

Policy (RMP) method with 95th/80th percentile daily breathing rate 
(DBR) to assess residential potential cancer risk.

DPM exposure and associated cancer risks, as generated by the 
model, were initially reported at the census block level statewide. These 
exposure levels and associated cancer risks were then aggregated to the 
census tract level using a population weighted approach. Spatially 
resolved cancer risks at the census tract level were calculated as follows: 

PWRi=
∑

j
riski(j) × popi(j)

/
∑

j
popi(j) (Eq. 3) 

where. 

riski – risk at census tract i
popi(j) - population in j-th block within census tract i
riski(j) - cancer risk at j-th block within census tract i

∑
jpopi(j) – total population within census tract i.

Population data for year 2010 were used to calculate population 
weighted cancer risk. The U.S. Census Bureau publishes population data 
every ten years.

2.6. Calculation of non-cancer health impact

DPM, a component of ambient PM2.5, is widely recognized as a sig
nificant contributor to air pollution-related health effects, including 
premature mortality. In this part, we utilized the Environmental Benefits 
Mapping and Analysis Program (BenMAP-CE v1.5.8) (Coffman et al., 
2024) developed by the U.S. EPA to estimate the reduction in mortality 
resulting from decreased DPM exposure between 2012 and 2017. This 
analysis aimed to assess the effectiveness of CARB’s regulatory programs 
in reducing DPM’s non-cancer health impact. We used the following 
concentration-response function: 

M= baseline incidence x population x
(
1 − e− βCDPM

)
(Eq. 4) 

where β is a coefficient value for PM2.5 cardiopulmonary mortality, and 
CDPM is the annual average concentration of DPM. β values, population 
data and baseline incidence rates for health impact functions were ob
tained from the BenMAP database (2010 census data for population, and 
2015 incidence were used for both 2012 and 2017 calculation). We used 
Eq. (4) to calculate the cardiopulmonary mortality impact of DPM for 
each age group in each census tract for the years of 2012 and 2017. 
These values were then summed to get the total mortality impact of 
ambient DPM for each air basin and the whole state of California for 
2012 and 2017. Note that other health impacts such as cardiovascular or 
respiratory hospitalization, and respiratory emergency room visits, 
including for asthma, due to exposure to DPM were not included in this 
study.

3. Results and discussion

3.1. Spatial distribution of DPM exposure and comparison with 
observations

Fig. 2 illustrates the spatial distributions of 2017 DPM concentra
tions in the modeling domains, sampled and plotted at census block 
resolution. The figure clearly indicates elevated concentrations pri
marily in major urban areas such as Los Angeles, San Francisco, and San 
Diego. These concentrations align with transportation corridors 
including freeways, major arterials, seaports, and railyards. Higher DPM 
levels are also observed along State Route 99 and major urban centers 
like Bakersfield and Fresno, attributed to on-road mobile sources and 
heavy agricultural activities in the San Joaquin Valley. Additionally, 
elevated concentrations are evident in the communities adjacent to the 
Mexico-United States border, which result from DPM emissions in 
Mexico transported into the U.S.

To evaluate our CALPUFF modeling, we compared modeled EC 
concentrations with monitoring data detailed in Materials and Methods.

SI Appendix Fig. S7 presents the comparison between our modeled 
total and fossil-fueled EC annual average concentrations against 
observed BC provided by the SCAQMD (2022). Studies indicated that BC 
and EC concentrations are similar within the measurement accuracy 
range (Pileci et al., 2021). In order to compare with modeled EC con
centrations, BC concentrations were converted to EC concentrations 
based on EC and BC relationships derived from EC and BC data observed 
at the same monitoring locations. Overall, the model performance is 
reasonable. Several statistics of model performance were calculated. The 
normalized mean errors (NME) were 0.311 and 0.333, respectively, for 
total and fossil EC. The corresponding normalized mean biases (NMB) 
were − 0.018 and − 0.094, and the coefficients of determination (R2) 
were 0.460 and 0.468, respectively. This level of performance for EC 
modeling can be considered satisfactory (Simon et al., 2012).

In summary, CALPUFF demonstrates reasonable performance in 
simulating annual average EC concentrations. Given that DPM and EC 
emission inventories were developed using the same methodology and 
data sources, the confidence level of modeled DPM annual concentra
tions by CALPUFF should be comparable to that of EC.

3.2. Characterization of cancer risk and trend analysis

Potential excess cancer risk of DPM was calculated by multiplying 
the annual average concentrations of DPM with the inhalation unit risk 
factor. Note that only inhalation exposure was considered in this study, 
which was shown to be the major exposure pathway by SCAQMD’s 
MATES-V study (93 %) (SCAQMD, 2021) and our internal studies at 
CARB (over 95 %). The results were expressed as potential cancer in
cidences per million people, or chances per million.

Fig. 3A depicts the spatial distribution of estimated DPM cancer risk 
in 2017 at the census block level statewide. Not surprisingly, the spatial 
pattern of DPM cancer risk closely mirrors that of DPM concentrations. 
High risks are distributed along major freeways and urban centers, as 
well as in communities near the California-Mexico border, where 
pollution transported from Mexico contributes to higher risks. In 
essence, areas with heightened risk tend to align with transportation and 
goods movement corridors, such as major freeways, seaports, airports, 
railyards, and near the border.

Fig. 3B shows the reduction of DPM cancer risk from 2012 to 2017. It 
is evident that a significant reduction in DPM risk is observed across 
most areas within the six air basins. The most substantial percentage 
decrease in risk is noted in major urban areas with high population 
density, as well as transportation and goods movement corridors. This 
reduction reflects the decline in DPM emissions from trucks on major 
freeways and off-road mobile sources such as ports and railyards, among 
others, which can be linked to major past and current regulations such as 
the On-Road Truck and Bus Rule and regulations of OGV and port 
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activities.
Some increases in cancer risk are seen in certain low-risk areas 

(warm-colored areas in Fig. 3B), including the northern Bay Area and 
the eastern regions of the San Diego air basin near the San Diego-Mexico 
border, as well as the northwest corner of Imperial County. These un
expected increases in cancer risk could be attributed to improvements in 
the emission inventory. For example, improvements in reporting of 
emissions, and emission sources that were present in the 2017 inventory 
but not in the 2012 inventory. Another reason is that some sources 
commenced to emit between 2012 and 2017. Examples include rezoning 
properties that had a net emission increase, e.g., rezoning an agricultural 
land into industrial zone, and relocation of some industrial facilities to 
the area where cancer risk is found to have increased. Additionally, due 
to the nature of construction activities, some projects that were active in 
2017 might not have existed in 2012.

Another notable finding is that communities in San Diego and Im
perial Counties near the California-Mexico border show relatively small 
reductions in risk. This can be attributed to updates in the Mexican 
emission inventory, which can change substantially over time. Despite 

significant reductions within San Diego and Imperial Counties, the 
overall reduction in risk was minimal since over 2/3 of the risk in these 
communities was caused by emissions transported from Mexico.

The population weighted potential cancer risks of DPM for each of 
the six air basins are presented in Fig. 4. Also shown are the percentage 
reductions in each air basin. Please note that the population weighted 
risk was calculated with population in every census block within each 
air basin’s jurisdiction, not the entire modeling domain. Clearly, cancer 
risks were quite different in different air basins and the South Coast had 
the highest cancer risk among all air basins. Basin-wide reductions in 
cancer risk were also different and the greatest reduction from 2012 to 
2017 occurred in the San Joaquin Valley. Overall, the risk reduction 
from 2012 to 2017 in California was significant. The population 
weighted DPM cancer risk was reduced by 42 % statewide with a range 
from 19 % to 59 % in individual air basins. Supplementary to the pop
ulation weighted risk, Fig. 5 presents how the cancer risk was distributed 
in 2017. It is seen that the highest cancer risk in the Sacramento Valley 
corresponds to about 50th percentile of the risk in the South Coast air 
basin, revealing the disparity in cancer risk among air basins. Another 

Fig. 2. Annual average DPM concentrations (μg/m3) obtained with 2017 meteorology and DPM emissions data. Also shown are the six modeling domains and major 
cities and freeways.
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aspect worth noting is the long tail of the cancer risk distribution in 
Imperial County where the mode is the lowest among all air basins, the 
long tail makes Imperial the air basin to have the second highest pop
ulation weighted cancer risk.

Fig. 6 presents DPM risk histograms and cumulative population 
percentage exposed to certain levels of cancer risk for 2012 and 2017, 
respectively. It shows clearly the general downward trend of cancer risk 
and in particular much fewer people being exposed to any given level of 
high risk. For example, in 2012, about 10 % of the population lived in 
areas with 1500 per million cancer risk, in 2017 the level was reduced to 
about 750 per million.

Overall, the risk reduction from 2012 to 2017 in California was 
significant. The population weighted DPM cancer risk was reduced by 
42 % statewide with a range from 19 % to 59 % in individual air basins 
(Fig. 4). As shown in Figs. 5 and 6, the percentage of cumulative pop
ulation exposed to high-level of DPM risk shrank from 2012 to 2017, 
demonstrating the overall benefit of DPM emission reduction. For 
example, in 2012 half of the population in the state were exposed to 
cancer risk levels below (and above) 800 chances per million, while in 

2017 the level was reduced to less than 500 chances per million. The 
histograms show a shift of the population distribution toward lower 
cancer risks, further revealing the benefit of emission reduction.

A further analysis of the cancer risk reduction distribution reveals 
that census tracts with higher population densities tended to have more 

Fig. 3. A. DPM cancer risk (per million) for 2017 (left). B. Cancer risk reduction (%) from 2012 to 2017 (right).

Fig. 4. Population weighted excess cancer risk for 2017 (vertical coordinate on 
the left-hand side) and its reduction from 2012 to 2017 (vertical coordinate on 
the right-hand side) in Six air basins. The reduction is in percentage, defined 
as (PWR2017 − PWR2012)/PWR2012

.

Fig. 5. DPM cancer risk distribution (chances per million) for each air basin at 
the census tract level in 2017.
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significant reductions in DPM cancer risk from 2012 to 2017. Fig. 7
shows that the reduction in DPM cancer risk from 2012 to 2017 
monotonically increased with population density, i.e., more densely 
populated areas tended to gain more reduction in cancer risk. In order 
words, the geographical disparity in DPM cancer risk decreased with 
time. SI Appendix Fig. S8 further shows that this statewide trend of 
reduction in disparity holds in each of the air basins. The reduction may 
be attributable to the fact that high population density areas coincided 
with major on-road emission sources (SI Appendix Figs. S3 and S9), and 
the on-road emission sector experienced the largest risk reduction from 
2012 to 2017 (SI Appendix Table S5). This suggests that regulatory 
measures like the Truck and Bus Rule have successfully targeted the 
most impactful emission sources and thus led to meaningful 

improvements for communities facing a disproportionate burden of 
DPM exposure. On the other hand, the extent of correlation varies in 
different air basins (SI Appendix Fig. S8). The highest correlation be
tween risk reductions and population densities was observed in Imperial 
and the lowest was observed in Bay Area.

3.3. Characterization of non-cancer risk and trend analysis

Statewide and air-basin wide non-cancer health impacts, i.e., all- 
cause mortality, from DPM exposure for the years 2012 and 2017 
were estimated by treating DPM as part of PM2.5 (shown in Fig. 8a and 
b). In the BenMAP calculation, BenMAP default 2015 incidence and 
2010 census track level population were used. Two all-cause mortality 
health impact functions (HIF) were chosen to avoid bias caused by 
choosing one HIF over the other. One is from Turner et al. (2016), and 
the other is from Pope et al. (2015). Similar results were obtained with 
these two HIFs (Fig. 8a vs. Fig. 8b), suggesting that the outcome of the 
BenMAP calculation is not affected by the choice of HIF. For the year 
2012, the statewide mortality attributable to DPM exposure was esti
mated at 70 premature deaths per 1 million population (1290 total 
deaths) based on Turner et al. (2016) and 81 premature deaths per 1 
million population (1495 total deaths) based on Pope et al. (2015). Our 
analysis showed an approximate 50 % decrease statewide in mortality 
due to exposure to the diesel portion of PM2.5 from 2012 to 2017 
(Fig. 8c). For the year 2017, we estimated 36 premature deaths per 1 
million population based on Turner et al. (2016) and 42 premature 
deaths per 1 million population based on Pope et al. (2015), as shown in 
Fig. 8a and b.

Breaking down the results by six air basins, South Coast accounts for 
the largest number of DPM-related premature deaths (Fig. 8a and b bar 
chart) due to its large population (SI Appendix Fig. S10a) and relative 
higher DPM concentration compared with other air basins (SI Appendix 
Fig. S10b), followed by Bay Area and San Joaquin Valley. In contrast, 
Imperial, Sacramento Valley and San Diego have fewer DPM-related 
premature deaths, either due to the small population share (Imperial, 
SI Appendix Fig. S10a), or relative lower DPM exposure (Sacramento 
Valley, SI Appendix Fig. S10b). When population size is normalized 
(expressed as deaths per 1 million residents), the pattern of deaths per 1 
million aligns closely with the distribution of DPM exposure across the 
six air basins. South Coast still shows the highest mortality rate, followed 
by San Joaquin Valley and Bay Area. It is interestingly to note, while 
Imperial has the smallest area and population, it is not the least 
impacted air basin because of its high per-capita DPM exposure, most of 

Fig. 6. DPM risk histograms for total population across the state, representing 
the cancer risk (per million) distribution across the statewide population at the 
census tract level. Coral and dark blue shadings represent 2012 and 2017 re
sults, respectively. Lines represent the cumulative population percentage (right 
y-axis), where 50 % indicates the risk level that separates half of the population. 
(For interpretation of the references to color in this figure legend, the reader is 
referred to the Web version of this article.)

Fig. 7. Tract-level DPM cancer risk reduction by population density percentiles represented by colors. The horizontal axis represents population density percentiles, 
and the vertical axis shows the level of cancer risk reduction. Boxes are defined as the interquartile range (IQR) of each subgroup, including the median (central line), 
upper (75th) and lower (25th) quartiles (box hinges), and maximum and minimum values within 1.5 × IQR (whiskers). Clearly, the areas with higher population 
density had higher cancer risk reduction. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)
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which comes from cross-border transport from Mexico.
Non-cancer risk reductions from 2012 to 2017 are shown in Fig. 8c. 

In general, premature death reduction rates in air basins follow the trend 
of cancer risk reduction rate (Fig. 4). The reductions in cancer and non- 
cancer health effects for DPM align with the reduction in DPM emissions 
over the same period. This reduction underscores the effectiveness of 
many of CARB’s diesel-related emission control regulations imple
mented over the past 2-3 decades. For instance, regulations such as the 
On-road Trucks and Buses rule (CARB, 2008) have played a crucial role. 
This rule mandated the replacement and retrofit of diesel-fueled en
gines, including the installation of diesel particulate filters, as well as the 
use of ultra-low-sulfur (<15 ppm) diesel fuel. Other measures have 
included substituting electric power for diesel where feasible and 
tightening emissions limits for both new and existing diesel engines. 
These efforts collectively contributed to the decrease in DPM emissions 
and associated health impact across the state.

Although the focus of the present study is to characterize regional 
and statewide cancer risks, it is worthwhile noting that the modeled 
results contain fine scale variations of DPM concentrations, e.g., the 
granular information of DPM concentrations within communities. Get
ting detailed variations of DPM risk does not require any additional 
effort since all results needed for this purpose have already been 
included in the model output. One can simply choose a community of 
interest and zoom in on the map in our data portal and visualization 
mapping tool (https://california-air-toxics-assessment-californiaarb. 
hub.arcgis.com/). Fig. 9 shows an example of community level details 
of inhalation cancer risk caused by exposure to ambient DPM concen
trations. The community is referred to as the Portside Environmental 
Justice Neighborhoods Community, which includes neighborhoods of 
Barrio Logan, West National City, Logan Heights, and Sherman Heights 
in South San Diego. The Community has been selected by California’s 
Community Air Protection Program for Community Air Monitoring 
Plan and Community Emissions Reduction Program. Clearly, spatial 
variation of DPM cancer risk in the community is strong, meaning that 
residents living in the same community can be impacted very differently 
by DPM. The detailed information of how DPM risk varies within the 
community and its source apportionment provides additional leverage 
to reduce DPM risk locally.

3.4. Source apportionment of DPM

In this study, each emission source sector was modeled separately to 
enable the quantification of contributions from each sector. This 
approach is valuable for informing future emission control efforts, 
particularly as DPM emission reductions are primarily achieved through 
sector-based policies at both the state and federal levels.

Fig. 10A illustrates the relative contribution of each sector to total 
statewide DPM cancer risk in 2017, with on-road mobile sources being 
the most significant at approximately 59 %, followed by aggregated 
area-point sources (16 %) and locomotives (8 %). Notably, source ap
portionments vary across air basins (Fig. 10B). In most air basins, on- 
road mobile sources contributed over 50 % to total risks, despite emit
ting less than half of the total DPM emissions (Table 1). The exception 
was Imperial County, where Mexico sources dominated due to large 
emission sources close to the border on the Mexico side, and higher 
population density near the border on the U.S. side.

The disproportionately higher contribution from on-road sources to 
cancer risk is attributed to their proximity to populated areas (SI Ap
pendix Figs. S1 and S9). Conversely, emissions from agricultural activ
ities in Sacramento Valley and SJV, while double that of on-road 
emissions, pose lower cancer risks due to their distance from populated 
urban areas. This underscores the importance of considering the spatial 
distribution of emissions and ambient concentrations over absolute 
emission rates in risk characterization. It also supports California’s 
regulatory focusing on reducing DPM risk from on-road mobile sources.

3.5. Limitations and caveats

Although this study reflects the best state-of-the-science efforts in 
emissions processing and air quality modeling, it is important to 
recognize certain caveats and limitations to ensure the accurate inter
pretation of the modeling results. In this study, the emission inventory 
was developed using the best-available datasets and methodologies to 
quantify emissions from a wide range of sources. However, it’s widely 
recognized that emission inventories are subject to uncertainties 
regarding the locations and release rates of emission sources (Davison 
et al., 2021). Missing emission sources and errors in emission estimates 
associated with stationary sources will be addressed by CARB’s newly 

Fig. 8. Statewide and air basins all-cause mortalities of DPM for 2012 (Coral) and 2017 (dark blue) were calculated with BenMAP-CE v1.5 (a, b), as well as the 
reduction rate from 2012 to 2017 (c). Population data are from 2010 Census at census tract level. Two health impact functions (HIF) were chosen to avoid bias caused 
by choosing one HIF over the other – (a) HIF from Turner et al. (2016), β = 0.005826891; (b) HIF from Pope et al. (2015), β = 0.00676586. Results obtained with two 
different HIFs show similar trends and about 50 % mortality decrease from 2012 to 2017 (33 mortalities per million with Turner et al. (2016) HIF and 39 mortalities 
per million with Pope et al. (2015)) HIF, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of 
this article.)
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implemented Criteria Pollutant and Toxics Emissions Reporting (CTR) 
system (CARB, 2020). Additionally, air quality modeling, including the 
CALPUFF model utilized in this study, inherently involves numerous 
approximations (Hanna, 1988). For instance, uncertainties exist in how 
emission sources are represented in the modeling process and in the 
development of the meteorological field used to drive the air quality 
models. These uncertainties can lead to inaccuracies in the estimations 
of ambient DPM concentrations.

Another significant source of uncertainty arises from the calculation 
of cancer risk based on DPM concentrations, coupled with numerous 
parameters that influence the uptake of ambient DPM into human 
bodies. In this study, health risks were assessed using the risk assessment 
guidance developed by OEHHA, which involves numerous sources of 
uncertainty and tends to be overly conservative (OEHHA, 2015). As 
outlined in the OEHHA Guidance, sources of uncertainty in risk esti
mates include, but are not limited to: (1) extrapolating toxicity data 
from animals to humans; (2) uncertainty in estimating emissions; (3) 
uncertainty in air dispersion models; and (4) uncertainty in exposure 
estimates. These factors contribute to the overall uncertainty 

surrounding the assessment of health risks associated with DPM 
exposure.

Despite these limitations, this study offers the most reliable estimate 
of cancer risks in California based on a recent emissions inventory, 
OEHHA guidance, and U.S. EPA air quality modeling guidelines. It 
should be noted that this study is based on both 2012 and 2017 emis
sions data, which may differ significantly from current levels. Future 
studies will focus on more recent emission estimates, but the nature of 
inventory development and the time it takes to conduct the detailed 
modeling means there will always be a disconnect between the model 
assessment year and the present day.

Ideally, emissions data for the most recent years should be used so 
that the modeled results reflect the current status of air quality, and 
more importantly, provide more meaningful guidance for future emis
sion reduction efforts. However, for statewide studies such as this one, a 
latency is not only expected, but necessary to develop comprehensive 
and detailed emissions inventories and conduct air quality modeling. 
This study represents a multi-year (3–5 years), iterative, comprehensive 
and resource-intensive effort at characterizing the health impact from 

Fig. 9. DPM cancer risk in the Portside EJ Neighborhood, encircled by the blue line. (For interpretation of the references to color in this figure legend, the reader is 
referred to the Web version of this article.)
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DPM across California, involving extensive emissions inventory prepa
ration, large-scale and fine-resolution modeling for over 30 emission 
sectors, and post-processing. Consequently, the findings presented in 
this paper should be interpreted with caution, and extrapolations from 
2012 to 2017 results are not recommended, as new emission reduction 
plans implemented since 2017 are not being accounted for. In addition, 
Fig. 11A and B shows that the combined effect of past and current 
emission control measures and regulations as we knew them will cause 
shifts in emission trends, in particular around year 2025, for both total 
and major categories of DPM sources across the state, and the general 
trend of cancer risk reductions are expected to change accordingly. 
Therefore, to verify whether these projected changes in emission trends 
occur, it is recommended that the status of DPM pollution be reassessed 
every few years with the most recent emissions data.

As more source testing, refined emission inventory, advanced 
modeling technologies, and updated health data become available, 
exposure and risk assessment for 2025 and beyond will be more robust 
and accurate.

3.6. Conclusions and policy implications

To our knowledge, this is the first study to quantify DPM exposure 
and associated health risks using an integrated modeling approach at 
scales ranging from local communities to statewide, incorporating all 
emission sources. This level of detail and computational intensity has 
not been previously reported in the literature. CARB’s comprehensive 
DPM emission inventories provided a valuable foundation for this novel 
research, offering a more accurate and reliable foundation for source 
apportionment, trend analysis, and guiding regulatory efforts.

Source apportionment analysis revealed that different emission 

sources contributed variably to overall risk: on-road mobile sources 
accounted for 59 %, off-road mobile sources for 19 %, area sources for 
21 %, and stationary sources for 1 % of the overall risk in 2017. 
Compared to 2012, the statewide population weighted cancer risk 
associated with DPM exposure decreased by 43 %, largely due to various 
CARB DPM emission control regulations and policies. Future emissions 
projections indicate significant reductions in on-road DPM emissions, 
primarily driven by ongoing efforts like the On-road Truck and Bus Rule. 
More specifically, as shown in Fig. 11, between 2018 and 2025, the 
contribution of on-road sources to inhalation cancer risk continues to 
decline and is eventually surpassed by the combined contributions from 
off-road and area-wide emission sources. In contrast, the reduction in 
health risk from off-road mobile and area sources was relatively slow 
from 2012 to 2017 (SI Appendix Table S5) and that is projected to 
continue. Therefore, future emission reduction efforts will likely need to 
prioritize off-road mobile sources, including cargo-handling equipment 
(CHE), transport refrigeration units (TRUs), and locomotives. Although 
the bulk of ocean-going vessel (OGV) emissions arise far away from 
population centers, the rapid growth of the OGV sector (Fig. 11B) from a 
net increase in activity and fewer regulations means a future focus on 
reducing emissions from that sector is warranted. Additionally, Cali
fornia could benefit from reducing emissions from area sources, such as 
construction and agriculture sectors, which have benefited from incen
tive programs in the past that have led to a reduction in emissions 
through the replacement of older and higher emitting equipment. In 
particular, the agriculture sector becomes increasingly relevant in terms 
of its contribution to total inhalation cancer risk due to its slower 
reduction rate compared to on-road mobile sources. After 2025, total 
DPM emissions are projected to level off. This change in the trends im
plies that additional measures will have to be developed and 

Fig. 10. Sources apportionment based on 2017 modeled results. A. Percentage contribution to the statewide population weighted excess DPM risk by emission source 
sectors. B. Source apportionment results at the air basin level. Each column represents one air basin. The bar chart shows the cancer risk due to each major emission 
source categories. In each column, the first pie chart outlines percentage contributions from each off-road source subcategory to the off-road source category as a 
whole, the second pie chart shows percentage contributions from each area source subcategory to the area source category as a whole.
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implemented so that the cancer risk associated with DPM will continue 
to decrease. Advances in technology will facilitate the promotion and 
adoption of zero-emission technologies across all emission sectors.

In summary, although significant progress has been made in 
reducing DPM emissions over the past few decades, DPM-related health 
risks remain high and continue to be a major toxic air pollutant in 
California. Therefore, further reductions in DPM emissions are essential. 
Since DPM particles are smaller than 2.5 μm, they are a part of PM2.5. As 
shown in Fig. 2, some localized areas have annual average DPM con
centrations exceeding 2 μg/m3, constituting a significant fraction of 
total PM2.5 at that time (https://www.arb.ca.gov/aqmis2/aqdselect.php
). Consequently, reduction in DPM emissions since 2017 has not only 
reduced overall risk but also contributed to lowering overall PM2.5 
levels.

While the present study focused on California, the methodology can 
be applied to other regions. It is likely that these general findings could 
be relevant across the United States, as some states have adopted similar 
regulatory efforts after California’s initiatives.
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